A280718 Expansion of (Sum_{k>=0} x^(k*(3*k-1)/2))^5.
1, 5, 10, 10, 5, 6, 20, 30, 20, 5, 10, 30, 35, 30, 30, 30, 25, 30, 60, 60, 25, 5, 35, 80, 70, 51, 35, 50, 80, 90, 80, 30, 35, 60, 80, 95, 90, 90, 50, 75, 140, 140, 85, 20, 70, 120, 130, 120, 95, 115, 100, 115, 140, 155, 110, 40, 80, 200, 230, 140, 81, 120, 200, 190, 180, 120, 80, 100, 160, 240, 200, 155, 120, 140, 245, 260, 230
Offset: 0
Keywords
Examples
a(5) = 6 because we have: [5, 0, 0, 0, 0] [0, 5, 0, 0, 0] [0, 0, 5, 0, 0] [0, 0, 0, 5, 0] [0, 0, 0, 0, 5] [1, 1, 1, 1, 1]
Links
- Ilya Gutkovskiy, Extended graphical example
- Eric Weisstein's World of Mathematics, Pentagonal Number
- Index to sequences related to polygonal numbers
Programs
-
Mathematica
nmax = 76; CoefficientList[Series[Sum[x^(k (3 k - 1)/2), {k, 0, nmax}]^5, {x, 0, nmax}], x]
Formula
G.f.: (Sum_{k>=0} x^(k*(3*k-1)/2))^5.
Comments