cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A280719 Expansion of (Sum_{k>=0} x^(k*(2*k-1)))^6.

Original entry on oeis.org

1, 6, 15, 20, 15, 6, 7, 30, 60, 60, 30, 6, 15, 60, 90, 66, 45, 60, 80, 90, 66, 50, 120, 180, 135, 60, 15, 60, 186, 210, 141, 126, 120, 126, 165, 180, 241, 300, 210, 90, 90, 180, 270, 270, 210, 212, 270, 270, 200, 210, 366, 450, 390, 270, 135, 210, 375, 360, 396, 420, 300, 330, 375, 380, 510, 480, 336, 450, 510, 390, 330
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 10 2017

Keywords

Comments

Number of ways to write n as an ordered sum of 6 hexagonal numbers (A000384).
a(n) > 0 for all n >= 0.
Every number is the sum of at most 6 hexagonal numbers.
Every number is the sum of at most k k-gonal numbers (Fermat's polygonal number theorem).

Examples

			a(6) = 7 because we have:
[6, 0, 0, 0, 0, 0]
[0, 6, 0, 0, 0, 0]
[0, 0, 6, 0, 0, 0]
[0, 0, 0, 6, 0, 0]
[0, 0, 0, 0, 6, 0]
[0, 0, 0, 0, 0, 6]
[1, 1, 1, 1, 1, 1]
		

Crossrefs

Programs

  • Mathematica
    nmax = 70; CoefficientList[Series[Sum[x^(k (2 k - 1)), {k, 0, nmax}]^6, {x, 0, nmax}], x]

Formula

G.f.: (Sum_{k>=0} x^(k*(2*k-1)))^6.

A290943 Number of ways to write n as an ordered sum of 3 generalized pentagonal numbers (A001318).

Original entry on oeis.org

1, 3, 6, 7, 6, 6, 7, 12, 12, 12, 9, 6, 12, 12, 18, 13, 12, 18, 12, 18, 12, 13, 18, 12, 24, 12, 12, 24, 21, 30, 12, 18, 18, 12, 24, 18, 19, 18, 24, 24, 18, 24, 36, 24, 18, 19, 18, 24, 24, 30, 18, 12, 36, 30, 24, 21, 18, 36, 24, 36, 24, 12, 36, 36, 36, 18, 25, 30, 24, 24, 24, 30, 24, 36, 30, 24
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 14 2017

Keywords

Comments

Conjecture: every number is the sum of at most k - 4 generalized k-gonal numbers (for k >= 8).
In 1830, Legendre showed that for each integer m>4 every integer N >= 28*(m-2)^3 can be written as the sum of five m-gonal numbers. In 1994 R. K. Guy proved that each natural number is the sum of three generalized pentagonal numbers. In a 2016 paper Zhi-Wei Sun proved that each natural number is the sum of four octagonal numbers. - Zhi-Wei Sun, Oct 03 2020

Examples

			a(6) = 7 because we have [5, 1, 0], [5, 0, 1], [2, 2, 2], [1, 5, 0], [1, 0, 5], [0, 5, 1] and [0, 1, 5].
		

Crossrefs

Programs

  • Maple
    N:= 100;
    bds:= [fsolve(k*(3*k-1)/2 = N)];
    G:= add(x^(k*(3*k-1)/2),k=floor(min(bds))..ceil(max(bds)))^3:
    seq(coeff(G,x,n),n=0..N); # Robert Israel, Aug 16 2017
  • Mathematica
    nmax = 75; CoefficientList[Series[Sum[x^(k (3 k - 1)/2), {k, -nmax, nmax}]^3, {x, 0, nmax}], x]
    nmax = 75; CoefficientList[Series[Sum[x^((6 k^2 + 6 k + (-1)^(k + 1) (2 k + 1) + 1)/16), {k, 0, nmax}]^3, {x, 0, nmax}], x]
    nmax = 75; CoefficientList[Series[EllipticTheta[4, 0, x^3]^3/QPochhammer[x, x^2]^3, {x, 0, nmax}], x]

Formula

G.f.: (Sum_{k=-infinity..infinity} x^(k*(3*k-1)/2))^3.
G.f.: (Sum_{k>=0} x^A001318(k))^3.
G.f.: Product_{n >= 1} ( (1 - q^(3*n))/(1 - q^n + q^(2*n)) )^3. - Peter Bala, Jan 04 2025
Showing 1-2 of 2 results.