cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282252 Exponential Riordan array [Bessel_I(0,2*x)^2, x].

Original entry on oeis.org

1, 0, 1, 4, 0, 1, 0, 12, 0, 1, 36, 0, 24, 0, 1, 0, 180, 0, 40, 0, 1, 400, 0, 540, 0, 60, 0, 1, 0, 2800, 0, 1260, 0, 84, 0, 1, 4900, 0, 11200, 0, 2520, 0, 112, 0, 1, 0, 44100, 0, 33600, 0, 4536, 0, 144, 0, 1, 63504, 0, 220500, 0, 84000, 0, 7560, 0, 180, 0, 1
Offset: 0

Views

Author

Peter Bala, Feb 12 2017

Keywords

Comments

Bessel_I(0,2*x) = Sum_{n >= 0} binomial(2*n,n)*x^(2*n)/(2*n)! is a modified Bessel function of the first kind.
Consider the infinite 2-dimensional square lattice Z x Z with an oriented self-loop at each vertex. Then the triangle entry T(n,k) equals the number of walks of length n from the origin to itself having k loops. An example is given below.
See A069466 for walks an infinite 2-dimensional square lattice without self-loops.
This is the square of triangle A109187, whose entries give the number of walks of length n from a vertex to itself having k loops on a 1-dimensional integer lattice with an oriented self-loop at each vertex.
A109187 is the exponential Riordan array [Bessel_I(0,2*x), x]. Note that Bessel_I(0,2*x)^2 = (Sum_{n >= 0} binomial(2*n,n)* x^(2*n)/(2*n)!)^2 = Sum_{n >= 0} binomial(2*n,n)^2*x^(2*n) /(2*n)!.

Examples

			The triangle begins
    1;
    0,   1;
    4,   0,   1;
    0,  12,   0,   1;
   36,   0,  24,   0,   1;
    0, 180,   0,  40,   0,   1;
  400,   0, 540,   0,  60,   0,   1;
  ...
T(3,1) = 12: on the square lattice, let L, R, U, D denote a left step, right step, up step and down step respectively. The 12 walks of length 3 containing a single loop are
    loop L R, loop R L, loop U D, loop D U,
    L loop R, R loop L, U loop D, D loop U,
    L R loop, R L loop, U D loop, D U loop.
The infinitesimal generator of this array has integer entries and begins
      0;
      0,    0;
      4,    0,    0;
      0,   12,    0,    0;
    -12,    0,   24,    0,    0;
      0,  -60,    0,   40,    0,    0;
    160,    0, -180,    0,   60,    0,    0;
      0, 1120,    0, -420,    0,   84,    0,    0;
  -4620,    0, 4480,    0, -840,    0,  112,    0,    0;
  ...
It is the generalized exponential Riordan array [ 2*log(Bessel_I(0,2*x)), x ].
		

Crossrefs

A201805 gives row sums. Cf. A069466, A109187.

Programs

  • Maple
    T := (n, k) -> (1/2)*binomial(n, k)*binomial(n-k, floor((1/2)*n-(1/2)*k))^2*(1+(-1)^(n-k)):
    seq(seq(T(n, k), k = 0..n), n = 0..9);
  • Mathematica
    Table[Binomial[n, k] Binomial[n - k, Floor[(n - k)/2]]^2*(1 + (-1)^(n - k))/2, {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Feb 12 2017 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(binomial(n,k)*binomial(n-k,floor((n-k)/2))^2*(1 + (-1)^(n-k))/2, ", "))) \\ G. C. Greubel, Aug 16 2017

Formula

T(n,k) = binomial(n,k)*binomial(n-k,floor((n-k)/2))^2*(1 + (-1)^(n-k))/2.
T(n,n-2*k) = n/(n - 2*k)*T(n-1,n-2*k-1).
T(n,k) = the coefficient of t^k in the expansion of (t + X + 1/X + Y + 1/Y)^n.
T(n,k) = 1/Pi^2 * Integral_{y = 0..Pi} Integral_{x = 0..Pi} ( t + 2*cos(x) + 2*cos(y) )^n dx dy.
E.g.f.: exp(x*t)*Bessel_I(0,2*x)^2 = 1 + t*x + (4 + t^2)*x^2/2! + (12*t + t^3)*x^3/3! + (36 + 24*t^2 + t^4)*x^4/4! + ....
The n-th row polynomial R(n,t) = Sum_{k = 0..floor(n/2)} binomial(n,2*k)*binomial(2*k,k)^2 * t^(n-2*k).
Recurrence: n^2*R(n,t) = t*(3*n^2 - 3*n + 1)*R(n-1,t) + (16 - 3*t^2)*(n - 1)^2*R(n-2,t) + t*(t^2 - 16)*(n - 1)*(n - 2)*R(n-3,t) with R(0,t) = 1, R(1,t) = t and R(2,t) = 4 + t^2.
d/dt(R(n,t)) = n*R(n-1,t).
The zeros of the row polynomials appear to lie on the imaginary axis in the complex plane. Also, the zeros of R(n,t) and R(n+1,t) appear to interlace on the imaginary axis.