A266829 Primes p such that a prime q < p exists with p^(q-1) == 1 (mod q^2) and q^(p-1) == 1 (mod p^2), i.e., primes that are the larger member of a double Wieferich prime pair.
1093, 4871, 18787, 318917, 1006003, 1645333507
Offset: 1
Links
- R. Ernvall and T. Metsänkylä, On the p-divisibility of Fermat quotients, Math. Comp., Volume 66, Number 219 (1997), 1353-1365.
- B. Logan and M. J. Mossinghoff, Double Wieferich pairs and circulant Hadamard matrices, ResearchGate, 2015.
Programs
-
Mathematica
fQ[p_] := Block[{q = 2}, While[q < p && (PowerMod[p, q - 1, q^2] != 1 || PowerMod[q, p - 1, p^2] != 1), q = NextPrime@ q]; If[q < p, True, False]]; p = 3; lst = {}; While[p < 1000000, If[fQ@ p, AppendTo[lst, p]]; p = NextPrime@ p]; lst (* Robert G. Wilson v, Jan 04 2016 *)
-
PARI
forprime(p=3, , forprime(q=2, p-1, if(Mod(p, q^2)^(q-1)==1 && Mod(q, p^2)^(p-1)==1, print1(p, ", "); break({1}))))
Extensions
a(5)-a(6) from Felix Fröhlich, May 29 2016
Removed three comments. - Felix Fröhlich, Aug 21 2018
Comments