cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282318 Number of ways of writing n as a sum of a prime and a nonprime squarefree number.

Original entry on oeis.org

0, 0, 0, 1, 1, 0, 1, 0, 2, 1, 0, 1, 2, 2, 1, 1, 1, 4, 2, 2, 2, 2, 1, 3, 3, 3, 2, 3, 3, 4, 1, 2, 4, 5, 2, 4, 2, 6, 5, 4, 4, 6, 3, 5, 6, 6, 4, 5, 3, 6, 3, 6, 5, 8, 3, 4, 4, 7, 6, 6, 4, 5, 8, 6, 6, 7, 2, 7, 9, 8, 5, 7, 6, 8, 8, 8, 8, 9, 3, 8, 9, 10, 8, 8, 5, 10, 6, 9, 10, 13, 4, 6, 8, 12, 10, 9, 8, 10, 12, 10, 9, 9, 7, 8, 11, 12, 9, 10
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 11 2017

Keywords

Comments

Conjecture: a(n) > 0 for all n > 10.

Examples

			a(17) = 4 because we have [15, 2], [14, 3], [11, 6] and [10, 7].
		

Crossrefs

Programs

  • MATLAB
    N = 200; % to get a(0) to a(N)
    Primes = primes(N);
    B = zeros(1,N);
    B(Primes) = 1;
    LPrimes = Primes(Primes .^ 2 < N);
    SF = 1 - B;
    for p = LPrimes
       SF(p^2:p^2:N) = 0;
    end
    C = conv(SF, B);
    C = [0,0,C(1:N-1)] % Robert Israel, Feb 12 2017
  • Mathematica
    nmax = 107; CoefficientList[Series[(Sum[x^Prime[i], {i, 1, nmax}]) (x + Sum[Sign[PrimeNu[j] - 1] MoebiusMu[j]^2 x^j, {j, 2, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: (Sum_{i>=1} x^prime(i))*(x + Sum_{j>=2} sgn(omega(j)-1)*mu(j)^2*x^j), where omega(j) is the number of distinct primes dividing j (A001221) and mu(j) is the Moebius function (A008683).