A282324 Greater of twin primes congruent to 19 (mod 30).
19, 109, 139, 199, 229, 349, 619, 829, 859, 1279, 1429, 1489, 1609, 1669, 1699, 1789, 1879, 1999, 2029, 2089, 2239, 2269, 2659, 2689, 3169, 3259, 3469, 3529, 3559, 3769, 3919, 4129, 4159, 4219, 4339, 4519, 4549, 4639, 4789, 4969, 5419, 5479, 5659, 5869, 6199
Offset: 1
Keywords
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..2000
Crossrefs
Programs
-
GAP
Filtered(List([1..220], k -> 30*k-11), n -> IsPrime(n) and IsPrime(n-2)); # Muniru A Asiru, Feb 02 2018
-
Magma
[p: p in PrimesUpTo(7000) | IsPrime(p-2) and p mod 30 eq 19 ]; // Vincenzo Librandi, Feb 13 2017
-
Maple
a:={}: for i from 1 to 1229 do if isprime(ithprime(i)-2) and ithprime(i) mod 30 = 19 then a:={op(a),ithprime(i)}: fi: od: a; # More efficient select(n -> isprime(n-2) and isprime(n), [seq(30*k+19, k=0..220)]); # Muniru A Asiru, Jan 30 2018
-
Mathematica
Select[Prime[Range[1000]], PrimeQ[# - 2] && Mod[#, 30] == 19 &] (* Vincenzo Librandi, Feb 13 2017 *)
-
PARI
list(lim)=my(v=List(), p=2); forprime(q=3, lim, if(q-p==2 && q%30==19, listput(v, q)); p=q); Vec(v) \\ Charles R Greathouse IV, Feb 14 2017
Comments