cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282324 Greater of twin primes congruent to 19 (mod 30).

Original entry on oeis.org

19, 109, 139, 199, 229, 349, 619, 829, 859, 1279, 1429, 1489, 1609, 1669, 1699, 1789, 1879, 1999, 2029, 2089, 2239, 2269, 2659, 2689, 3169, 3259, 3469, 3529, 3559, 3769, 3919, 4129, 4159, 4219, 4339, 4519, 4549, 4639, 4789, 4969, 5419, 5479, 5659, 5869, 6199
Offset: 1

Views

Author

Martin Renner, Feb 11 2017

Keywords

Comments

The union of [A282323 and this sequence] is A132242.
The union of [{5, 7}, A282322, this sequence and A282326] is the greater of twin primes sequence A006512.
The union of [{3, 5, 7}, A282321 to A282326] is the twin primes sequence A001097.
Number of terms less than 10^k, k=2,3,4,...: 1, 9, 64, 414, 2734, 19674, 146953, ... - Muniru A Asiru, Feb 09 2018

Crossrefs

Programs

  • GAP
    Filtered(List([1..220], k -> 30*k-11), n -> IsPrime(n) and IsPrime(n-2));  # Muniru A Asiru, Feb 02 2018
  • Magma
    [p: p in PrimesUpTo(7000) | IsPrime(p-2) and p mod 30 eq 19 ]; // Vincenzo Librandi, Feb 13 2017
    
  • Maple
    a:={}:
    for i from 1 to 1229 do
      if isprime(ithprime(i)-2) and ithprime(i) mod 30 = 19 then
        a:={op(a),ithprime(i)}:
      fi:
    od:
    a;
    # More efficient
    select(n -> isprime(n-2) and isprime(n), [seq(30*k+19, k=0..220)]); # Muniru A Asiru, Jan 30 2018
  • Mathematica
    Select[Prime[Range[1000]], PrimeQ[# - 2] && Mod[#, 30] == 19 &] (* Vincenzo Librandi, Feb 13 2017 *)
  • PARI
    list(lim)=my(v=List(), p=2); forprime(q=3, lim, if(q-p==2 && q%30==19, listput(v, q)); p=q); Vec(v) \\ Charles R Greathouse IV, Feb 14 2017