cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A282391 Numbers j such that d(j) = d(j + 3*d(j)), where d(j) is the number of divisors of j.

Original entry on oeis.org

5, 7, 10, 11, 13, 14, 15, 17, 21, 22, 23, 26, 27, 30, 31, 32, 34, 37, 39, 41, 42, 45, 46, 47, 50, 53, 54, 57, 60, 61, 62, 65, 67, 72, 73, 74, 78, 82, 83, 90, 94, 96, 97, 98, 99, 101, 103, 104, 106, 107, 111, 114, 120, 122, 128, 129, 130, 131, 133, 134, 143
Offset: 1

Views

Author

Vladimir Shevelev, Feb 14 2017

Keywords

Comments

The sequence contains the smaller member of every pair of sexy primes (A023201).
The sequence contains no perfect squares. Indeed, let a(m) = k^2 for some m. Then, by the definition, d(k^2 + 3*d(k^2)) = d(k^2). Note that d(k^2) is odd. On the other hand, it is known (cf. A046522) that d(k^2) < 2*k. Hence (k+3)^2 - k^2 = 6*k + 1 > 3*d(k^2). Thus k^2 < k^2 + 3*d(k^2) < (k+3)^2. Note that, evidently, k^2 + 3*d(k^2) cannot be (k+2)^2. Let us also show that k^2 + 3*d(k^2) cannot be (k+1)^2, or, equivalently, 3*d(k^2) cannot be equal to 2*k + 1. Indeed, let 3*d(k^2) = 2*k + 1. For some prime p, let p^a || k (that is, p^a | k, but p^(a+1) !| k), a > 0, so 2*k + 1 == 1 (mod p). But now we have 3*p^(a+1) | 3*d(k^2) and thus 3*p^(a+1)|2*k + 1, so 2*k + 1 == 0 (mod p). Contradiction. Therefore, we conclude that k^2 + 3*d(k^2) cannot be a square. Hence, d(k^2 + 3*d(k^2)) is even, which is a contradiction.

Crossrefs

Programs

Extensions

More terms from Peter J. C. Moses, Feb 14 2017
Showing 1-1 of 1 results.