A282408 Numbers k for which the number of odd members and the number of even members in the Collatz (3x+1) trajectory are both a perfect square.
1, 2, 16, 17, 322, 323, 512, 1595, 1598, 1599, 1609, 1614, 1615, 1627, 1641, 1643, 1657, 1663, 1776, 1780, 1781, 1784, 1786, 2176, 2208, 2216, 2218, 2240, 2256, 2260, 2261, 2274, 2275, 2400, 2408, 2410, 2416, 2417, 2420, 2421, 3844, 3845, 3846, 3848, 3850, 3852
Offset: 1
Keywords
Examples
17 is in the sequence because the Collatz trajectory is 17 -> 52 -> 26 -> 13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1 => the number of odd members is 4 = 2^2 and number of even members is 9 = 3^2.
Links
Programs
-
Maple
nn:=10^6: for n from 1 to 10000 do: m:=n:i1:=1:i2:=0: for i from 1 to nn while(m<>1) do: if irem(m,2)=0 then m:=m/2:i2:=i2+1: else m:=3*m+1:i1:=i1+1: fi: od: if sqrt(i1)=floor(sqrt(i1)) and sqrt(i2)=floor(sqrt(i2)) then printf(`%d, `,n): else fi: od:
-
Mathematica
fQ[n_] := Block[{m = n, e = 0, o = 1}, While[m > 1, If[OddQ@ m, m = 3 m + 1; o++, m /= 2; e++]]; IntegerQ@ Sqrt@ e && IntegerQ@ Sqrt@ o]; Select[ Range@ 3855, fQ] (* Robert G. Wilson v, Feb 14 2017 *) memsqQ[n_]:=Module[{col=NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#!=1&]}, AllTrue[ {Sqrt[ Count[ col, ?(EvenQ[#]&)]],Sqrt[Count[col,?(OddQ[ #]&)]]},IntegerQ]]; Select[Range[4000],memsqQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 04 2018 *)
Comments