A282410 a(n) = binomial(2*p-1, p-1) modulo p^5, where p = prime(n).
3, 10, 126, 1716, 30614, 2198, 1100513, 713337, 4635628, 4511966, 15729649, 49285370, 10820598, 115444165, 110571496, 84562137, 145202954, 386548644, 208729523, 1232287574, 790871562, 2277840181, 3525066856, 4912928962, 7258488370, 8723558568, 9006255935
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- C. Aebi and G. Cairns, Wolstenholme again, arXiv:1502.05750 [math.NT], 2015.
- R. J. McIntosh, On the converse of Wolstenholme's theorem, Acta Arithmetica, Vol. 71, No. 4 (1995), 381-389.
Programs
-
Mathematica
f[n_] := Block[{p = Prime@n}, Mod[ Binomial[ 2p -1, p -1], p^5]]; Array[f, 27] (* Robert G. Wilson v, Feb 14 2017 *) Table[Mod[Binomial[2p-1,p-1],p^5],{p,Prime[Range[30]]}] (* Harvey P. Dale, Jul 07 2022 *)
-
PARI
a(n) = my(p=prime(n)); lift(Mod(binomial(2*p-1, p-1), p^5))
-
Python
from sympy import Mod, binomial, prime def A282410(n): return int(Mod(binomial(2*(p:=prime(n))-1,p-1,evaluate=False),p**5)) # Chai Wah Wu, Apr 24 2025
Comments