cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282410 a(n) = binomial(2*p-1, p-1) modulo p^5, where p = prime(n).

Original entry on oeis.org

3, 10, 126, 1716, 30614, 2198, 1100513, 713337, 4635628, 4511966, 15729649, 49285370, 10820598, 115444165, 110571496, 84562137, 145202954, 386548644, 208729523, 1232287574, 790871562, 2277840181, 3525066856, 4912928962, 7258488370, 8723558568, 9006255935
Offset: 1

Views

Author

Felix Fröhlich, Feb 14 2017

Keywords

Comments

Conjecture: a(n) != 1 for all n (cf. McIntosh, 1995, p. 387).
See arXiv:1502.05750, Theorem 2 for several conditions equivalent to p having a(n) = 1.
Clearly, a prime p such that a(n) = 1 must be a Wolstenholme prime, i.e., a term of A088164.
a(n) is prime for n: 1, 7, 19, 59, 76, 92, 109, 112, 165, 196, 221, 249, 263, 326, etc. Robert G. Wilson v, Feb 14 2017

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{p = Prime@n}, Mod[ Binomial[ 2p -1, p -1], p^5]]; Array[f, 27] (* Robert G. Wilson v, Feb 14 2017 *)
    Table[Mod[Binomial[2p-1,p-1],p^5],{p,Prime[Range[30]]}] (* Harvey P. Dale, Jul 07 2022 *)
  • PARI
    a(n) = my(p=prime(n)); lift(Mod(binomial(2*p-1, p-1), p^5))
    
  • Python
    from sympy import Mod, binomial, prime
    def A282410(n): return int(Mod(binomial(2*(p:=prime(n))-1,p-1,evaluate=False),p**5)) # Chai Wah Wu, Apr 24 2025