cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282464 a(n) = Sum_{i=0..n} i*Fibonacci(i)^2.

Original entry on oeis.org

0, 1, 3, 15, 51, 176, 560, 1743, 5271, 15675, 45925, 133056, 381888, 1087645, 3077451, 8658951, 24245655, 67602608, 187789616, 519924075, 1435228575, 3951341811, 10852291273, 29740435200, 81340229376, 222058995001, 605201766675, 1646862596223, 4474969884411
Offset: 0

Views

Author

Bruno Berselli, Feb 16 2017

Keywords

Crossrefs

Cf. A000045.
Partial sums of A169630.
Cf. A014286: partial sums of i*Fibonacci(i).
Cf. A064831: partial sums of (n+1-i)*Fibonacci(i)^2.

Programs

  • Magma
    [&+[i*Fibonacci(i)^2: i in [0..n]]: n in [0..30]];
  • Maple
    with(combinat): P:=proc(q) local a,n; a:=0; print(a); for n from 1 to q do
    a:=a+n*fibonacci(n)^2; print(a); od; end: P(100); # Paolo P. Lava, Feb 17 2017
  • Mathematica
    a[n_] := Sum[i*Fibonacci[i]^2, {i, 0, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 16 2017 *)
    LinearRecurrence[{5,-4,-10,10,4,-5,1},{0,1,3,15,51,176,560},30] (* Harvey P. Dale, May 15 2021 *)
  • Maxima
    makelist(sum(i*fib(i)^2, i, 0, n), n, 0, 30);
    
  • PARI
    a(n) = sum(i=0, n, i*fibonacci(i)^2) \\ Colin Barker, Feb 16 2017
    
  • Sage
    [sum(i*fibonacci(i)^2 for i in [0..n]) for n in range(30)]
    

Formula

O.g.f.: x*(1 - 2*x + 4*x^2 - 2*x^3 + x^4)/((1 - x)*(1 + x)^2*(1 - 3*x + x^2)^2).
a(n) = 5*a(n-1) - 4*a(n-2) - 10*a(n-3) + 10*a(n-4) + 4*a(n-5) - 5*a(n-6) + a(n-7).
a(n) = ((n-1)*Fibonacci(n) + n*Fibonacci(n-1))*Fibonacci(n) + (1 - (-1)^n)/2.