cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282465 a(n) = 11*Fibonacci(n+3) + Fibonacci(n-8) with n>=0.

Original entry on oeis.org

1, 46, 47, 93, 140, 233, 373, 606, 979, 1585, 2564, 4149, 6713, 10862, 17575, 28437, 46012, 74449, 120461, 194910, 315371, 510281, 825652, 1335933, 2161585, 3497518, 5659103, 9156621, 14815724, 23972345, 38788069, 62760414, 101548483, 164308897, 265857380, 430166277
Offset: 0

Views

Author

Bruno Berselli, Feb 20 2017

Keywords

Comments

Similar sequences with the formula h*Fibonacci(n+k) + Fibonacci(n+k-h):
h= 1, k=-1: A000045;
h= 2, k= 1: A013655;
h= 3, k=-2: A118658 = 2*A212804;
h= 4, k= 2: A022379 = 3*A000204;
h= 5, k= 1: A022113;
h= 6, k= 2: A022125;
h= 7, k= 3: A097657;
h= 8, k= 2: A022355 = 21*A000045;
h= 9, k= 3: 10, 32, 42, 74, 116, 190, 306, 496, 802, ... = 2*A022140;
h=10, k= 3: 33, 22, 55, 77, 132, 209, 341, 550, 891, ... = 11*A013655;
h=11, k= 3: this sequence.

Crossrefs

Cf. sequences with g.f. (1 + r*x)/(1 - x - x^2) for r = 2..31, respectively: A000204, A000285, A022095 - A022110, A022391 - A022402.

Programs

  • Magma
    [11*Fibonacci(n+3)+Fibonacci(n-8): n in [0..40]];
    
  • Mathematica
    Table[11 Fibonacci[n + 3] + Fibonacci[n - 8], {n, 0, 40}]
    LinearRecurrence[{1,1},{1,46},36] (* or *) CoefficientList[Series[(1 + 45*x)/(1 - x - x^2) , {x,0,35}],x] (* Indranil Ghosh, Feb 22 2017 *)
  • PARI
    a(n) = 11*fibonacci(n+3) + fibonacci(n-8) \\ Indranil Ghosh, Feb 23 2017

Formula

G.f.: (1 + 45*x)/(1 - x - x^2).
a(n) = a(n-1) + a(n-2).
a(n) = a(i)*Fibonacci(n-i+1) + a(i-1)*Fibonacci(n-i). Examples:
for i= 3, a(3)=93, a(2)= 47: a(n) = 93*Fibonacci(n-2) + 47*Fibonacci(n-3);
for i=-1, a(-1)=45, a(-2)=-44: a(n) = 45*Fibonacci(n+2) - 44*Fibonacci(n+1).
Other formulae:
a(n) = 44*Fibonacci(n) + Fibonacci(n+2),
a(n) = 45*Fibonacci(n) + Fibonacci(n+1),
a(n) = 46*Fibonacci(n) + Fibonacci(n-1),
a(n) = 47*Fibonacci(n) - Fibonacci(n-2).
a(n) = ((91 + sqrt(5))*((1 + sqrt(5))/2)^n - (91 - sqrt(5))*((1 - sqrt(5))/2)^n)/sqrt(20).