A282466 a(n) = n*a(n-1) + n!, with n>0, a(0)=5.
5, 6, 14, 48, 216, 1200, 7920, 60480, 524160, 5080320, 54432000, 638668800, 8143027200, 112086374400, 1656387532800, 26153487360000, 439378587648000, 7825123418112000, 147254595231744000, 2919482409811968000, 60822550204416000000, 1328364496464445440000
Offset: 0
References
- C. Mariconda and A. Tonolo, Calcolo discreto, Apogeo (2012), page 240 (Example 9.57 gives the recurrence).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..440
Crossrefs
Programs
-
Magma
A282466:= func< n | (n+5)*Factorial(n) >; // G. C. Greubel, May 14 2025
-
Mathematica
RecurrenceTable[{a[0] == 5, a[n] == n a[n - 1] + n!}, a, {n, 0, 30}] (* or *) Table[(n + 5) n!, {n, 0, 30}]
-
SageMath
def A282466(n): return (n+5)*factorial(n) # G. C. Greubel, May 14 2025
Formula
E.g.f.: (5 - 4*x)/(1 - x)^2.
a(n) = (n + 5)*n!.
a(n) = 2*A229039(n) for n>0.
From Amiram Eldar, Nov 06 2020: (Start)
Sum_{n>=0} 1/a(n) = 9*e - 24.
Sum_{n>=0} (-1)^n/a(n) = 24 - 65/e. (End)