cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282497 'Somos expansion' of e: e=a(0)*sqrt(a(1)*sqrt(a(2)*sqrt(a(3)*sqrt(...)))). a(n)=floor(x(n)), x(n)=x(n-1)^2/a(n-1)^2, x(0)=e.

Original entry on oeis.org

2, 1, 3, 1, 1, 2, 1, 3, 1, 2, 1, 3, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 1, 1, 3, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 3, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1
Offset: 0

Views

Author

Yuriy Sibirmovsky, Feb 16 2017

Keywords

Comments

1<=a(n)<=3 for all n. Reasoning: for x>1 it follows that 1

Examples

			Integer part of e is 2. Integer part of e^2/4 is 1.
		

Crossrefs

Cf. A001113 (digits).

Programs

  • Mathematica
    $MaxExtraPrecision = 1000;
    x0 = E;
    Nm = 130;
    j = 1;
    Res = Table[1, {j, 1, Nm}];
    While[j < Nm, Res[[j]] = Floor[x0]; x0 = N[(x0/ Res[[j]])^2, 20000];
      j++];

Formula

Product_{k>=0} a(k)^(1/2^k) = e.