A282531 Numbers k where records occur for d(k+1)/d(k), where d(k) is A000005(k).
1, 11, 23, 47, 59, 167, 179, 239, 359, 719, 839, 1259, 2879, 3359, 5039, 7559, 10079, 21839, 33599, 35279, 37799, 55439, 100799, 110879, 166319, 262079, 327599, 415799, 665279, 831599, 1081079, 1441439, 2827439, 3326399, 4989599, 6320159, 6486479, 10533599
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..71 (terms 1..52 from Daniel Suteu)
- Andrzej Schinzel, Sur une propriété du nombre de diviseurs, Publ. Math. (Debrecen), Vol. 3 (1954), pp. 261-262.
Programs
-
Mathematica
seq[kmax_] := Module[{d1 = 1, d2, rm = 0, r, s = {}}, Do[d2 = DivisorSigma[0, k]; r = d2 / d1; If[r > rm, rm = r; AppendTo[s, k-1]]; d1 = d2, {k, 2, kmax}]; s]; seq[10^6] (* Amiram Eldar, Apr 18 2024 *) Module[{nn=840000},DeleteDuplicates[Thread[{Range[nn-1],#[[2]]/#[[1]]&/@Partition[ DivisorSigma[ 0,Range[nn]],2,1]}],GreaterEqual[#1[[2]],#2[[2]]]&]][[;;,1]] (* The program generates the first 30 terms of the sequence. *) (* Harvey P. Dale, Jun 10 2024 *)
-
PARI
lista(kmax) = {my(d1 = 1, d2, rm = 0, r); for(k = 2, kmax, d2 = numdiv(k); r = d2 / d1; if(r > rm, rm = r; print1(k-1, ", ")); d1 = d2);} \\ Amiram Eldar, Apr 18 2024
-
Perl
use ntheory qw(:all); for (my ($n, $m) = (1, 0) ; ; ++$n) { my $d = divisors($n+1) / divisors($n); if ($m < $d) { $m = $d; print "$n\n"; } }
Comments