cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282531 Numbers k where records occur for d(k+1)/d(k), where d(k) is A000005(k).

Original entry on oeis.org

1, 11, 23, 47, 59, 167, 179, 239, 359, 719, 839, 1259, 2879, 3359, 5039, 7559, 10079, 21839, 33599, 35279, 37799, 55439, 100799, 110879, 166319, 262079, 327599, 415799, 665279, 831599, 1081079, 1441439, 2827439, 3326399, 4989599, 6320159, 6486479, 10533599
Offset: 1

Views

Author

Daniel Suteu, Feb 18 2017

Keywords

Comments

This sequence is infinite (Schinzel, 1954). - Amiram Eldar, Apr 18 2024

Crossrefs

Programs

  • Mathematica
    seq[kmax_] := Module[{d1 = 1, d2, rm = 0, r, s = {}}, Do[d2 = DivisorSigma[0, k]; r = d2 / d1; If[r > rm, rm = r; AppendTo[s, k-1]]; d1 = d2, {k, 2, kmax}]; s]; seq[10^6] (* Amiram Eldar, Apr 18 2024 *)
    Module[{nn=840000},DeleteDuplicates[Thread[{Range[nn-1],#[[2]]/#[[1]]&/@Partition[ DivisorSigma[ 0,Range[nn]],2,1]}],GreaterEqual[#1[[2]],#2[[2]]]&]][[;;,1]] (* The program generates the first 30 terms of the sequence. *) (* Harvey P. Dale, Jun 10 2024 *)
  • PARI
    lista(kmax) = {my(d1 = 1, d2, rm = 0, r); for(k = 2, kmax, d2 = numdiv(k); r = d2 / d1; if(r > rm, rm = r; print1(k-1, ", ")); d1 = d2);} \\ Amiram Eldar, Apr 18 2024
  • Perl
    use ntheory qw(:all);
    for (my ($n, $m) = (1, 0) ; ; ++$n) {
        my $d = divisors($n+1) / divisors($n);
        if ($m < $d) {
            $m = $d;
            print "$n\n";
        }
    }