A282548 Expansion of phi_{12, 1}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
0, 1, 4098, 531444, 16785412, 244140630, 2177857512, 13841287208, 68753047560, 282431130813, 1000488301740, 3138428376732, 8920506494928, 23298085122494, 56721594978384, 129747072969720, 281612482805776, 582622237229778, 1157402774071674
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Mathematica
Table[n * DivisorSigma[11, n], {n, 0, 18}] (* Amiram Eldar, Sep 06 2023 *)
-
PARI
a(n) = if(n < 1, 0, n*sigma(n, 11)) \\ Andrew Howroyd, Jul 25 2018
Formula
a(n) = n*A013959(n) for n > 0.
Sum_{k=1..n} a(k) ~ zeta(12) * n^13 / 13. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^e * (p^(11*e+11)-1)/(p^11-1).
Dirichlet g.f.: zeta(s-1)*zeta(s-12). (End)
Comments