cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A282611 Expansion of q^(-1/3) * c(q) * c(q^3) / 9 in powers of q where c() is a cubic AGM theta function.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 3, 4, 4, 6, 4, 6, 3, 10, 4, 8, 7, 12, 8, 10, 7, 15, 7, 16, 9, 14, 7, 14, 12, 20, 13, 16, 13, 23, 13, 18, 12, 28, 16, 20, 16, 24, 12, 28, 17, 30, 13, 24, 20, 32, 19, 32, 16, 42, 21, 28, 19, 36, 27, 30, 21, 40, 24, 40, 19, 43, 21, 34, 28, 46
Offset: 0

Views

Author

Michael Somos, Feb 19 2017

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
G.f. is a period 1 Fourier series which satisfies f(-1 / (9 t)) = (t/i)^2 g(t) where g() is the g.f. for A282610.

Examples

			G.f. = x + x^2 + 2*x^3 + x^4 + 3*x^5 + 3*x^6 + 4*x^7 + 4*x^8 + 6*x^9 + ...
G.f. = q^4 + q^7 + 2*q^10 + q^13 + 3*q^16 + 3*q^19 + 4*q^22 + 4*q^25 + ...
		

Crossrefs

Cf. A282610.

Programs

  • Magma
    Basis( ModularForms( Gamma0(27), 2), 210)[5];
  • Mathematica
    a[ n_] := SeriesCoefficient[ x QPochhammer[ x^3]^2 QPochhammer[ x^9]^3 / QPochhammer[ x], {x, 0, n}];
  • PARI
    {a(n) = if( n<1, 0, n--; my(A = x * O(x^n)); polcoeff( eta(x^3 + A)^2 * eta(x^9 + A)^3 / eta(x + A), n))};
    

Formula

Expansion of q^(-1/3) * eta(q^3)^2 * eta(q^9)^3 / eta(q) in powers of q.
Euler transform of period 9 sequence [1, 1, -1, 1, 1, -1, 1, 1, -4, ...].
Showing 1-1 of 1 results.