A282610 Expansion of b(q) * b(q^3) in powers of q where b() is a cubic AGM function.
1, -3, 0, 3, 6, 0, -18, 3, 0, 12, 0, 0, 21, -15, 0, -36, -12, 0, 36, 21, 0, 24, 0, 0, -90, 15, 0, 12, -6, 0, 54, 12, 0, -72, 0, 0, 84, -33, 0, 42, 0, 0, -144, -24, 0, 72, 0, 0, 93, 18, 0, -108, 30, 0, 36, 0, 0, 60, 0, 0, -252, 3, 0, 96, 24, 0, 108, -15, 0
Offset: 0
Keywords
Examples
G.f. = 1 - 3*q + 3*q^3 + 6*q^4 - 18*q^6 + 3*q^7 + 12*q^9 + 21*q^12 - 15*q^13 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
Programs
-
Magma
A := Basis( ModularForms( Gamma0(27), 2), 69); A[1] - 3*A[2] + 3*A[4] + 6*A[5] - 18*A[6];
-
Mathematica
a[ n_] := SeriesCoefficient[ QPochhammer[ q]^3 QPochhammer[ q^3]^2 / QPochhammer[ q^9], {q, 0, n}];
-
PARI
first(n)=my(q='x+O('x^(n+1))); Vec(eta(q)^3 * eta(q^3)^2 / eta(q^9)) \\ Charles R Greathouse IV, Jun 02 2017
Comments