cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282614 Number of inequivalent 3 X 3 matrices with entries in {1,2,3,..,n} up to vertical and horizontal reflections.

Original entry on oeis.org

0, 1, 168, 5346, 67840, 496875, 2544696, 10151428, 33693696, 97135605, 250525000, 590412966, 1291500288, 2653631071, 5169160920, 9616725000, 17188519936, 29659392873, 49607301096, 80696066410, 128032800000, 198613915731, 301875282808, 450363792396
Offset: 0

Views

Author

David Nacin, Feb 19 2017

Keywords

Comments

Cycle index of symmetry group is (2*s(2)^3*s(1)^3 + s(2)^4*s(1) + s(1)^9)/4.

Examples

			The number of 3 X 3 binary matrices up to vertical and horizontal reflections is 168.
		

Crossrefs

Cf. A282613, A282614, A217331, A168555. (For 2x2 version see A039623.)

Programs

  • Mathematica
    Table[(2n+1+n^4)n^5/4, {n, 0, 24}]
    LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{0,1,168,5346,67840,496875,2544696,10151428,33693696,97135605},30] (* Harvey P. Dale, Oct 01 2024 *)
  • PARI
    concat(0, Vec(x*(1 + 158*x + 3711*x^2 + 21820*x^3 + 39095*x^4 + 22254*x^5 + 3577*x^6 + 104*x^7) / (1 - x)^10 + O(x^30))) \\ Colin Barker, Feb 23 2017

Formula

a(n) = n^5*(n+1)*(n^3-n^2+n+1)/4.
G.f.: x*(1 + 158*x + 3711*x^2 + 21820*x^3 + 39095*x^4 + 22254*x^5 + 3577*x^6 + 104*x^7) / (1 - x)^10. - Colin Barker, Feb 23 2017