A282614 Number of inequivalent 3 X 3 matrices with entries in {1,2,3,..,n} up to vertical and horizontal reflections.
0, 1, 168, 5346, 67840, 496875, 2544696, 10151428, 33693696, 97135605, 250525000, 590412966, 1291500288, 2653631071, 5169160920, 9616725000, 17188519936, 29659392873, 49607301096, 80696066410, 128032800000, 198613915731, 301875282808, 450363792396
Offset: 0
Examples
The number of 3 X 3 binary matrices up to vertical and horizontal reflections is 168.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
Programs
-
Mathematica
Table[(2n+1+n^4)n^5/4, {n, 0, 24}] LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{0,1,168,5346,67840,496875,2544696,10151428,33693696,97135605},30] (* Harvey P. Dale, Oct 01 2024 *)
-
PARI
concat(0, Vec(x*(1 + 158*x + 3711*x^2 + 21820*x^3 + 39095*x^4 + 22254*x^5 + 3577*x^6 + 104*x^7) / (1 - x)^10 + O(x^30))) \\ Colin Barker, Feb 23 2017
Formula
a(n) = n^5*(n+1)*(n^3-n^2+n+1)/4.
G.f.: x*(1 + 158*x + 3711*x^2 + 21820*x^3 + 39095*x^4 + 22254*x^5 + 3577*x^6 + 104*x^7) / (1 - x)^10. - Colin Barker, Feb 23 2017
Comments