A282613
Number of inequivalent 3 X 3 matrices with entries in {1,2,3,..,n} up to rotations.
Original entry on oeis.org
0, 1, 140, 4995, 65824, 489125, 2521476, 10092775, 33562880, 96870249, 250025500, 589527851, 1290008160, 2651218765, 5165397524, 9611031375, 17180133376, 29647326545, 49590297900, 80672546899, 128000804000, 198571037301, 301818598180, 450289780535
Offset: 0
The number of 3 X 3 binary matrices up to rotations is 140.
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
-
Table[(2n^3+n^5+n^9)/4, {n, 0, 24}]
-
concat(0, Vec(x*(1 + 130*x + 3640*x^2 + 22054*x^3 + 39070*x^4 + 22054*x^5 + 3640*x^6 + 130*x^7 + x^8) / (1 - x)^10 + O(x^30))) \\ Colin Barker, Feb 23 2017
A282612
Number of inequivalent 3 X 3 matrices with entries in {1,2,3,..,n} up to row permutations.
Original entry on oeis.org
0, 1, 120, 3654, 45760, 333375, 1703016, 6784540, 22500864, 64836045, 167167000, 393877506, 861456960, 1769830699, 3447273480, 6412923000, 11461636096, 19776716505, 33076889784, 53804808190, 85365336000, 132422893911, 201268229800, 300266132244, 440396812800
Offset: 0
The number of 3 X 3 binary matrices up to row permutations is 120.
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
-
Table[(3n^6+2n^3+n^9)/6, {n, 0, 24}]
-
concat(0, Vec(x*(1 + 110*x + 2499*x^2 + 14500*x^3 + 26015*x^4 + 14934*x^5 + 2365*x^6 + 56*x^7) / (1 - x)^10 + O(x^30))) \\ Colin Barker, Feb 23 2017
A283027
Number of inequivalent 4 X 4 matrices with entries in {1,2,3,...,n} up to rotations.
Original entry on oeis.org
0, 1, 16456, 10763361, 1073758336, 38147070625, 705277897416, 8308234084801, 70368748374016, 463255057977921, 2500000025005000, 11487432519490081, 46221064831264896, 166354152499741921, 544488334821309256, 1642102089568970625, 4611686019501162496
Offset: 0
For n=2 we get a(2)=16456 inequivalent 4 X 4 binary matrices up to rotations.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (17,-136,680,-2380,6188,-12376,19448,-24310,24310,-19448,12376,-6188,2380,-680,136,-17,1).
-
List([0..20], n -> n^4*(n^4+1)*(n^8-n^4+2)/4); # G. C. Greubel, Dec 07 2018
-
[n^4*(n^4+1)*(n^8-n^4+2)/4: n in [0..20]]; // G. C. Greubel, Dec 07 2018
-
[n^4*(n^4+1)*(n^8-n^4+2)/4$n=0..18]; # Muniru A Asiru, Dec 07 2018
-
Table[n^4*(n^4 + 1)*(n^8 - n^4 + 2)/4,{n,0,30}]
-
a(n) = n^4*(n^4 + 1)*(n^8 - n^4 + 2)/4; \\ Indranil Ghosh, Feb 27 2017
-
def A283027(n) : return n**4*(n**4 + 1)*(n**8 - n**4 + 2)/4 # Indranil Ghosh, Feb 27 2017
-
def A283027(n): return n**4*(n**4*(n**8+1)+2)>>2 # Chai Wah Wu, Jan 24 2023
-
[n^4*(n^4+1)*(n^8-n^4+2)/4 for n in range(20)] # G. C. Greubel, Dec 07 2018
A283031
Number of inequivalent 5 X 5 matrices with entries in {1,2,3,...,n} up to rotations.
Original entry on oeis.org
0, 1, 8390720, 211822552035, 281474993496064, 74505806274453125, 7107572010747738816, 335267154940213889575, 9444732965876730429440, 179474496923598616041129, 2500000000002500005000000, 27086764858479561198237131, 238490541610199280719585280
Offset: 0
For n=2 we get a(2)=8390720 inequivalent 5 X 5 binary matrices up to rotations.
-
List([0..30], n -> n^7*(n^2+1)*(n^4-n^2+1)*(n^12-n^6+2)/4); # G. C. Greubel, Dec 07 2018
-
[n^7*(n^2+1)*(n^4-n^2+1)*(n^12-n^6+2)/4: n in [0..20]]; // G. C. Greubel, Dec 07 2018
-
[n^7*(n^2+1)*(n^4-n^2+1)*(n^12-n^6+2)/4$n=0..16]; # Muniru A Asiru, Dec 07 2018
-
Table[n^7(n^2 + 1)(n^4 - n^2 + 1)(n^12 - n^6 + 2)/4, {n, 0, 16}]
-
a(n) = n^7*(n^2 + 1)*(n^4 - n^2 + 1)*(n^12 - n^6 + 2)/4; \\ Indranil Ghosh, Feb 27 2017
-
def A283031(n): return n**7*(n**2 + 1)*(n**4 - n**2 + 1)*(n**12 - n**6 + 2)/4 # Indranil Ghosh, Feb 27 2017
-
def A283031(n): return n**7*(n**6*(n**12+1)+2)>>2 # Chai Wah Wu, Jan 24 2023
-
[n^7*(n^2+1)*(n^4-n^2+1)*(n^12-n^6+2)/4 for n in range(20)] # G. C. Greubel, Dec 07 2018
A283033
Number of inequivalent 5 X 5 matrices with entries in {1,2,3,...,n} up to rotations and reflections.
Original entry on oeis.org
0, 1, 4211744, 105918450471, 140738033618944, 37252918396015625, 3553786240466361696, 167633579843887699759, 4722366500530551259136, 89737248564744874067889, 1250000000501250002500000, 13543382431328404683826391, 119245270812803151147085824
Offset: 0
For n=2 we get a(2)=4211744 inequivalent 5 X 5 binary matrices up to rotations and reflections.
-
List([0..20], n -> n^7*(n^18+4*n^8+n^6+2)/8); # G. C. Greubel, Dec 07 2018
-
[n^7*(n^18+4*n^8+n^6+2)/8: n in [0..20]]; // G. C. Greubel, Dec 07 2018
-
[n^7*(n^18+4*n^8+n^6+2)/8$n=0..16]; # Muniru A Asiru, Dec 07 2018
-
Table[n^7 (n^18 + 4 n^8 + n^6 + 2)/8, {n, 0, 16}]
-
a(n) = n^7*(n^18 + 4*n^8 + n^6 + 2)/8; \\ Indranil Ghosh, Feb 27 2017
-
def A283033(n): return n**7*(n**18 + 4*n**8 + n**6 + 2)/8 # Indranil Ghosh, Feb 27 2017
-
[n^7*(n^18+4*n^8+n^6+2)/8 for n in range(20)] # G. C. Greubel, Dec 07 2018
A283028
Number of inequivalent 4 X 4 matrices with entries in {1,2,3,...,n} up to vertical and horizontal reflections.
Original entry on oeis.org
0, 1, 16576, 10766601, 1073790976, 38147265625, 705278736576, 8308236966001, 70368756760576, 463255079498001, 2500000075000000, 11487432626662201, 46221065046245376, 166354152907593001, 544488335559184576, 1642102090850390625, 4611686021648613376
Offset: 0
For n=2 we get a(2)=16576 inequivalent 4 X 4 binary matrices up to vertical and horizontal reflections.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (17, -136, 680, -2380, 6188, -12376, 19448, -24310, 24310, -19448, 12376, -6188, 2380, -680, 136, -17, 1).
-
List([0..20], n -> n^8*(n^8+3)/4); # G. C. Greubel, Dec 07 2018
-
[n^8*(n^8+3)/4: n in [0..20]]; // G. C. Greubel, Dec 07 2018
-
[n^8*(n^8+3)/4$n=0..18]; # Muniru A Asiru, Dec 07 2018
-
Table[n^8(n^8 + 3)/4,{n,0,30}]
-
a(n) = n^8 * (n^8 + 3)/4; \\ Altug Alkan, Feb 27 2017
-
def A283028(n): return n**8*(n**8 + 3)/4 # Indranil Ghosh, Feb 27 2017
-
[n^8*(n^8+3)/4 for n in range(20)] # G. C. Greubel, Dec 07 2018
A283029
Number of inequivalent 5 X 5 matrices with entries in {1,2,3,..,n} when a matrix and its transpose are considered equivalent.
Original entry on oeis.org
0, 1, 16793600, 423651479175, 562950490292224, 149011627197265625, 14215144250057342976, 670534312205763205375, 18889465949070766899200, 358948993948871860432449, 5000000000500000000000000, 54173529719030485105622951, 476981083228048575587942400
Offset: 0
For n=2 we get a(2)=16793600 inequivalent 5x5 binary matrices up to the action of transposition.
-
Table[n^15 (n^2 + 1) (n^8 - n^6 + n^4 - n^2 + 1)/2, {n, 0, 12}]
-
a(n) = n^15*(n^2+1)*(n^8-n^6+n^4-n^2+1)/2; \\ Indranil Ghosh, Feb 27 2017
-
def A283029(n): return n**15*(n**2+1)*(n**8-n**6+n**4-n**2+1)/2 # Indranil Ghosh, Feb 27 2017
A283030
Number of inequivalent 5 X 5 matrices with entries in {1,2,3,...,n} up to row permutations.
Original entry on oeis.org
0, 1, 376992, 7355513529, 9474438804480, 2491483056641250, 237223883948569056, 11182222570880983622, 314920519245916176384, 5983496429606726016735, 83341666958337500020000, 902948225666983587054711, 7950004204832195461143552, 58805000552467321853765064
Offset: 0
For n=2 we get a(2)=376992 inequivalent 5 X 5 binary matrices up to row permutations.
-
List([0..20], n -> n^5*(n^20 +10*n^15 +35*n^10 +50*n^5 +24)/120); # G. C. Greubel, Dec 07 2018
-
[n^5*(n^20 +10*n^15 +35*n^10 +50*n^5 +24)/120: n in [0..20]]; // G. C. Greubel, Dec 07 2018
-
[(10*n^20+35*n^15+50*n^10+24*n^5+n^25)/120$n=0..16]; # Muniru A Asiru, Dec 07 2018
-
Table[(10n^20+ 35n^15 + 50n^10 + 24n^5 + n^25)/120, {n, 0, 16}]
-
a(n) = (10*n^20 + 35*n^15 + 50*n^10 + 24*n^5 + n^25)/120; \\ Indranil Ghosh, Feb 27 2017
-
def A283030(n): return (10*n**20 + 35*n**15 + 50*n**10 + 24*n**5 + n**25)/120 # Indranil Ghosh, Feb 27 2017
-
[n^5*(n^20 +10*n^15 +35*n^10 +50*n^5 +24)/120 for n in range(20)] # G. C. Greubel, Dec 07 2018
A283032
Number of inequivalent 5 X 5 matrices with entries in {1,2,3,...,n} up to vertical and horizontal reflections.
Original entry on oeis.org
0, 1, 8407040, 211829725395, 281475530358784, 74505821533203125, 7107572245840091136, 335267157313994232775, 9444732983468915425280, 179474497026544179696969, 2500000000502500000000000, 27086764860568185273201371, 238490541617902791488962560
Offset: 0
For n=2 we get a(2)=8407040 inequivalent 5 X 5 binary matrices up to vertical and horizontal reflections.
-
List([0..30], n -> n^13*(n^2+1)*(n^10-n^8+n^6-n^4+n^2+1)/4); # G. C. Greubel, Dec 07 2018
-
[n^13*(n^2+1)*(n^10-n^8+n^6-n^4+n^2+1)/4: n in [0..20]]; // G. C. Greubel, Dec 07 2018
-
[n^13*(n^2+1)*(n^10-n^8+n^6-n^4+n^2+1)/4$n=0..16]; # Muniru A Asiru, Dec 07 2018
-
Table[n^13*(n^2 + 1)*(n^10- n^8 + n^6 - n^4 + n^2 + 1)/4, {n, 0, 16}]
-
a(n) = n^13*(n^2 + 1)*(n^10 - n^8 + n^6 - n^4 + n^2 + 1)/4; \\ Indranil Ghosh, Feb 27 2017
-
def A283032(n): return n**13*(n**2 + 1)*(n**10 - n**8 + n**6 - n**4 + n**2 + 1)/4 # Indranil Ghosh, Feb 27 2017
-
[n^13*(n^2+1)*(n^10-n^8+n^6-n^4+n^2+1)/4 for n in range(20)] # G. C. Greubel, Dec 07 2018
A283026
Number of inequivalent 4 X 4 matrices with entries in {1,2,3,..,n} up to row permutations.
Original entry on oeis.org
0, 1, 3876, 1929501, 183181376, 6419043125, 118091211876, 1388168405001, 11745311589376, 77279801651001, 416916712502500, 1915356782994501, 7705740009485376, 27731516944463501, 90762229896563876, 273716119247180625, 768684707117285376, 2027695320242670001
Offset: 0
For n=2 we get a(2)=3876 inequivalent 4x4 binary matrices up to row permutations.
-
Table[n^4*(n^4 + 1)*(n^4 + 2)*(n^4 + 3)/24,{n,0,30}]
-
a(n) = n^4*(n^4 + 1)*(n^4 + 2)*(n^4 + 3)/24; \\ Indranil Ghosh, Feb 27 2017
-
def A283026(n) : return n**4*(n**4 + 1)*(n**4 + 2)*(n**4 + 3)/24 # Indranil Ghosh, Feb 27 2017
Showing 1-10 of 10 results.
Comments