A282754 Admirable numbers such that the subtracted divisor is a Fibonacci number.
12, 20, 40, 70, 88, 104, 464, 650, 1504, 1888, 1952, 4030, 5830, 7192, 7912, 8925, 9555, 10792, 13736, 17272, 30555, 30592, 32128, 32445, 78975, 130304, 442365, 521728, 522752, 1713592, 1848964, 4526272, 8353792, 8378368, 8382464, 9928792, 11547352, 17999992
Offset: 1
Keywords
Examples
40 is in the sequence because sigma(40) - 2*5 = 90 - 10 = 80 = 2*40, where 5 is a Fibonacci number, or 1 + 2 + 4 + 8 + 10 + 20 - 5 = 40 where the subtracted divisor is 5.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..46
- Terry Trotter, Admirable Numbers, 2009. [Wayback Machine copy]
Programs
-
Maple
with(numtheory): for n from 1 to 20000 do: x:=divisors(n):n0:=nops(x): for i from 1 to n0 do: u:=sqrt(5*x[i]^2-4):v:=sqrt(5*x[i]^2+4): if (floor(u)=u or floor(v)=v) and sigma(n)-2*x[i]=2*n then printf(`%d %d \n`,n, x[i]): else fi: od: od:
-
Mathematica
With[{nn = 10^6}, Function[s, Flatten@ Position[#, 1] &@ Table[Total@ Boole@ Map[MemberQ[s, #] &, Select[Most@ Divisors@ n, Function[d, DivisorSigma[1, n] - 2 d == 2 n]]], {n, nn}]]@ Fibonacci@ Range[2 + Floor@ Log[GoldenRatio, nn]]] (* Michael De Vlieger, Feb 24 2017 *) (* or *) fibQ[n_] := IntegerQ@ Sqrt[5 n^2 + 4] || IntegerQ@ Sqrt[5 n^2 - 4]; ok[n_] := Block[{d = DivisorSigma[1, n] - 2 n}, d>0 && EvenQ@d && Mod[n, d/2] == 0 && fibQ[d/2]]; Select[Range[10^6], ok] (* faster, Giovanni Resta, Mar 10 2017 *)
-
PARI
isadmirable(n)=if(issquare(n)||issquare(n/2), 0, my(d=sigma(n)/2-n); (d>0 && d!=n && n%d==0)*d); isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8)) isok(n) = (d=isadmirable(n)) && isfib(d); \\ Michel Marcus, Mar 10 2017
Extensions
More terms from Michel Marcus, Mar 10 2017
Comments