cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282754 Admirable numbers such that the subtracted divisor is a Fibonacci number.

Original entry on oeis.org

12, 20, 40, 70, 88, 104, 464, 650, 1504, 1888, 1952, 4030, 5830, 7192, 7912, 8925, 9555, 10792, 13736, 17272, 30555, 30592, 32128, 32445, 78975, 130304, 442365, 521728, 522752, 1713592, 1848964, 4526272, 8353792, 8378368, 8382464, 9928792, 11547352, 17999992
Offset: 1

Views

Author

Michel Lagneau, Feb 21 2017

Keywords

Comments

Subsequence of A111592.
The corresponding Fibonacci numbers are given by the sequence {b(n)} = 2, 1, 5, 2, 2, 1, 1, 1, 8, 2, 1, 2, 2, 8, 8, 3, 21, 8, 34, 8, 21, 8, 2, 3, 13, 1, 3, 2, 1, ....

Examples

			40 is in the sequence because sigma(40) - 2*5 = 90 - 10 = 80 = 2*40, where 5 is a Fibonacci number, or 1 + 2 + 4 + 8 + 10 + 20 - 5 = 40 where the subtracted divisor is 5.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
       for n from 1 to 20000 do:
         x:=divisors(n):n0:=nops(x):
           for i from 1 to n0 do:
             u:=sqrt(5*x[i]^2-4):v:=sqrt(5*x[i]^2+4):
              if (floor(u)=u or floor(v)=v) and sigma(n)-2*x[i]=2*n
                 then
                 printf(`%d %d \n`,n, x[i]):
                 else
                fi:
             od:
       od:
  • Mathematica
    With[{nn = 10^6}, Function[s, Flatten@ Position[#, 1] &@ Table[Total@ Boole@ Map[MemberQ[s, #] &, Select[Most@ Divisors@ n, Function[d, DivisorSigma[1, n] - 2 d == 2 n]]], {n, nn}]]@ Fibonacci@ Range[2 + Floor@ Log[GoldenRatio, nn]]] (* Michael De Vlieger, Feb 24 2017 *) (* or *)
    fibQ[n_] := IntegerQ@ Sqrt[5 n^2 + 4] || IntegerQ@ Sqrt[5 n^2 - 4]; ok[n_] := Block[{d = DivisorSigma[1, n] - 2 n}, d>0 && EvenQ@d && Mod[n, d/2] == 0 && fibQ[d/2]]; Select[Range[10^6], ok] (* faster, Giovanni Resta, Mar 10 2017 *)
  • PARI
    isadmirable(n)=if(issquare(n)||issquare(n/2), 0, my(d=sigma(n)/2-n); (d>0 && d!=n && n%d==0)*d);
    isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8))
    isok(n) = (d=isadmirable(n)) && isfib(d); \\ Michel Marcus, Mar 10 2017

Extensions

More terms from Michel Marcus, Mar 10 2017