A282755 Numbers k such that the set of all the decimal digits of k is the same as the set of all the decimal digits of the proper divisors of k.
11, 125, 1255, 2510, 11009, 11099, 11255, 11379, 12326, 12955, 14379, 14397, 15033, 15303, 16325, 17482, 21109, 25105, 31007, 31503, 33011, 35213, 37127, 37921, 41303, 44011, 49319, 51367, 53491, 63013, 69413, 70319, 71057, 72013, 72517, 74341, 77011, 81767
Offset: 1
Examples
16325 is in the sequence because the set of the digits is E = {1, 2, 3, 5, 6} and the proper divisors (or aliquot parts) of 16325 are 1, 5, 25, 653 and 3265 with the same set of digits.
Programs
-
Maple
with(numtheory): for n from 1 to 200000 do: z:=convert(n,base,10):n0:=nops(z):lst1:={op(z),z[n0]}: x:=divisors(n):n1:=nops(x):lst:={}: for m from 1 to n1-1 do: y:=convert(x[m],base,10):n2:=nops(y): lst2:={op(y),y[n2]}:lst:=lst union lst2 od: if lst1=lst then printf(`%d, `,n): else fi: od:
-
Mathematica
Select[Range[10^5], Function[k, Union@ Flatten@ Map[IntegerDigits, Most@ Divisors@ k] == Union@ IntegerDigits@ k]] (* Michael De Vlieger, Feb 25 2017 *)
Comments