A282852 37-gonal numbers: a(n) = n*(35*n-33)/2.
0, 1, 37, 108, 214, 355, 531, 742, 988, 1269, 1585, 1936, 2322, 2743, 3199, 3690, 4216, 4777, 5373, 6004, 6670, 7371, 8107, 8878, 9684, 10525, 11401, 12312, 13258, 14239, 15255, 16306, 17392, 18513, 19669, 20860, 22086, 23347, 24643, 25974
Offset: 0
Links
Programs
-
Mathematica
Table[n(35n-33)/2, {n, 40}] PolygonalNumber[37,Range[0,40]] (* Requires Mathematica version 10 or later *) (* or *) LinearRecurrence[{3,-3,1},{0,1,37},40] (* Harvey P. Dale, Oct 24 2020 *)
-
PARI
for(n=0,100,print1(n*(35*n-33)/2,", ")) \\ Derek Orr, Feb 27 2017
-
Python
for n in range(0,51): print(n*(35*n-33)//2)
Formula
From Nikolaos Pantelidis, Feb 10 2023: (Start)
G.f.: x*(1 + 34*x)/(1 - x)^3.
E.g.f.: exp(x)*(x + 35*x^2/2). (End)
Comments