A282867 Primes of the form x^2 + y^2 with x > y such that x^2 - y^2 is a square and x^4 + y^4 is a prime.
41, 313, 3593, 4481, 32633, 42961, 66361, 67073, 165233, 198593, 237161, 266921, 378953, 462073, 465041, 487073, 559001, 594161, 750353, 757633, 815401, 1157033, 1414081, 1416161, 1687393, 2439881, 2793481, 2866121, 2947561, 3344161, 3577913, 3759713, 4295281, 4617073, 4795481, 5654641
Offset: 1
Keywords
Examples
For prime 41 = 5^2 + 4^2 is 5^2 - 4^2 = 3^2 and 5^4 + 4^4 = 881 is prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 10^7: # to get all terms <= N Res:= {}: for w from 1 to floor((2*N)^(1/4)) by 2 do for u from 1 to min(w-1, floor((2*N-w^4)^(1/4))) by 2 do p:= (u^4 + w^4)/2; if isprime(p) and isprime((u^8 + 6*u^4*w^4 + w^8)/8) then Res:= Res union {p} fi; od od: sort(convert(Res,list)); # Robert Israel, Feb 24 2017
-
Mathematica
Select[Total[#^2]&/@Select[Subsets[Range[3000],{2}],IntegerQ[Sqrt[#[[2]]^2-#[[1]]^2]] && PrimeQ[ Total[#^4]]&],PrimeQ]//Union (* Harvey P. Dale, Jul 23 2024 *)
Formula
a(n) == 1 (mod 8).
a(n) == 1 or 33 (mod 40).
Comments