cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282867 Primes of the form x^2 + y^2 with x > y such that x^2 - y^2 is a square and x^4 + y^4 is a prime.

Original entry on oeis.org

41, 313, 3593, 4481, 32633, 42961, 66361, 67073, 165233, 198593, 237161, 266921, 378953, 462073, 465041, 487073, 559001, 594161, 750353, 757633, 815401, 1157033, 1414081, 1416161, 1687393, 2439881, 2793481, 2866121, 2947561, 3344161, 3577913, 3759713, 4295281, 4617073, 4795481, 5654641
Offset: 1

Views

Author

Thomas Ordowski and Altug Alkan, Feb 23 2017

Keywords

Comments

Primes of the form (u^4 + v^4)/2 with u and v odd and (u^8 + 6*u^4*v^4 + v^8)/8 prime. - Robert Israel, Feb 24 2017

Examples

			For prime 41 = 5^2 + 4^2 is 5^2 - 4^2 = 3^2 and 5^4 + 4^4 = 881 is prime.
		

Crossrefs

Subsequence of A002646.

Programs

  • Maple
    N:= 10^7: # to get all terms <= N Res:= {}:
    for w from 1 to floor((2*N)^(1/4)) by 2 do
      for u from 1 to min(w-1, floor((2*N-w^4)^(1/4))) by 2 do
        p:= (u^4 + w^4)/2;
        if isprime(p) and isprime((u^8 + 6*u^4*w^4 + w^8)/8) then
          Res:= Res union {p}
        fi;
    od od:
    sort(convert(Res,list)); # Robert Israel, Feb 24 2017
  • Mathematica
    Select[Total[#^2]&/@Select[Subsets[Range[3000],{2}],IntegerQ[Sqrt[#[[2]]^2-#[[1]]^2]] && PrimeQ[ Total[#^4]]&],PrimeQ]//Union (* Harvey P. Dale, Jul 23 2024 *)

Formula

a(n) == 1 (mod 8).
a(n) == 1 or 33 (mod 40).