A282869 Triangle read by rows: T(n,k) is the number of dispersed Dyck prefixes (i.e., left factors of Motzkin paths with no (1,0) steps at positive heights) of length n and height k.
1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 7, 5, 2, 1, 1, 12, 10, 6, 2, 1, 1, 20, 21, 12, 7, 2, 1, 1, 33, 41, 28, 14, 8, 2, 1, 1, 54, 81, 56, 36, 16, 9, 2, 1, 1, 88, 155, 120, 72, 45, 18, 10, 2, 1, 1, 143, 297, 239, 165, 90, 55, 20, 11, 2, 1, 1, 232, 560, 492, 330, 220, 110, 66, 22, 12, 2, 1, 1, 376, 1054, 974, 715, 440, 286, 132, 78, 24, 13, 2, 1
Offset: 0
Examples
Triangle starts: 1; 1, 1; 1, 2, 1; 1, 4, 2, 1; 1, 7, 5, 2, 1; 1, 12, 10, 6, 2, 1; 1, 20, 21, 12, 7, 2, 1; ... T(4,3) = 2 because we have UUUD and HUUU, where U=(1,1), D=(1,-1), H=(1,0). T(4,2) = 5 because we have UUDD, UUDU, UDUU, HUUD and HHUU.
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- Steven R. Finch, How far might we walk at random?, arXiv:1802.04615 [math.HO], 2018.
Programs
-
Maple
b:= proc(x, y, m) option remember; `if`(x=0, z^m, `if`(y>0, b(x-1, y-1, m), 0)+ `if`(y=0, b(x-1, y, m), 0)+b(x-1, y+1, max(m, y+1))) end: T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0$2)): seq(T(n), n=0..16); # Alois P. Heinz, Mar 13 2017
-
Mathematica
b[x_, y_, m_] := b[x, y, m] = If[x == 0, z^m, If[y > 0, b[x - 1, y - 1, m], 0] + If[y == 0, b[x - 1, y, m], 0] + b[x - 1, y + 1, Max[m, y + 1]]]; T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][ b[n, 0, 0]]; Table[T[n], {n, 0, 16}] // Flatten (* Jean-François Alcover, May 12 2017, after Alois P. Heinz *)
Formula
T(n,1) = A000071(n+1), (Fibonacci numbers minus 1).
Comments