A282870 a(n) = floor( Li(n) - pi(n) ).
0, 0, 0, 0, 1, 0, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 4, 4, 4, 3, 3, 4, 4, 4, 4, 5, 5, 4, 4, 4, 5, 4, 4, 3, 3, 4, 4
Offset: 2
Keywords
References
- Melvyn B. Nathanson, Elementary Methods in Number Theory, Springer, 2000
Programs
-
Magma
[Floor(LogIntegral(n) - #PrimesUpTo(n)): n in [2..110]]; // G. C. Greubel, May 17 2019
-
Maple
a:= n-> floor(evalf(Li(n)))-numtheory[pi](n): seq(a(n), n=2..120); # Alois P. Heinz, Feb 23 2017
-
Mathematica
iend = 100; For[x = 1, x <= iend, x++, a[x] = N[LogIntegral[x] - PrimePi[x]]]; t = Table[Floor[a[i]], {i, 2, iend}]; Print[t] Table[Floor[LogIntegral[n] - PrimePi[n]], {n, 2, 110}] (* G. C. Greubel, May 17 2019 *)
-
PARI
vector(110, n, n++; floor(real(-eint1(-log(n))) - primepi(n)) ) \\ G. C. Greubel, May 17 2019
-
Sage
[floor(li(n) - prime_pi(n)) for n in (2..110)] # G. C. Greubel, May 17 2019
Comments