cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282870 a(n) = floor( Li(n) - pi(n) ).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 4, 4, 4, 3, 3, 4, 4, 4, 4, 5, 5, 4, 4, 4, 5, 4, 4, 3, 3, 4, 4
Offset: 2

Views

Author

David S. Newman, Feb 23 2017

Keywords

Comments

Li(x) is the logarithmic integral of x.
pi(x) is the number of primes less than or equal to x, A000720(x).
"The Riemann hypothesis is an assertion about the size of the error term in the prime number theorem, namely, that pi(x) = li(x)+O(x^(1/2+epsilon))", see Nathanson, page 323.

References

  • Melvyn B. Nathanson, Elementary Methods in Number Theory, Springer, 2000

Crossrefs

Programs

  • Magma
    [Floor(LogIntegral(n) - #PrimesUpTo(n)): n in [2..110]]; // G. C. Greubel, May 17 2019
    
  • Maple
    a:= n-> floor(evalf(Li(n)))-numtheory[pi](n):
    seq(a(n), n=2..120);  # Alois P. Heinz, Feb 23 2017
  • Mathematica
    iend = 100;
    For[x = 1, x <= iend, x++,
    a[x] = N[LogIntegral[x] - PrimePi[x]]]; t =
    Table[Floor[a[i]], {i, 2, iend}]; Print[t]
    Table[Floor[LogIntegral[n] - PrimePi[n]], {n, 2, 110}] (* G. C. Greubel, May 17 2019 *)
  • PARI
    vector(110, n, n++; floor(real(-eint1(-log(n))) - primepi(n)) ) \\ G. C. Greubel, May 17 2019
    
  • Sage
    [floor(li(n) - prime_pi(n)) for n in (2..110)] # G. C. Greubel, May 17 2019

Formula

a(n) = A047783(n) - A000720(n).