A282920 Expansion of Product_{k>=1} (1 - x^(7*k))^8/(1 - x^k)^9 in powers of x.
1, 9, 54, 255, 1035, 3753, 12483, 38701, 113193, 315013, 839802, 2155905, 5352252, 12894426, 30233558, 69160869, 154677325, 338822547, 728084435, 1536931932, 3190959918, 6523084815, 13142291319, 26118847655, 51244059231, 99322878506, 190306301025
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A282919.
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1 - x^(7*j))^8/(1 - x^j)^9: j in [1..m+2]]) )); // G. C. Greubel, Nov 18 2018 -
Mathematica
nmax = 30; CoefficientList[Series[Product[(1 - x^(7*k))^8 /(1 - x^k)^9, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2017 *)
-
PARI
my(N=30,x='x+O('x^N)); Vec(prod(j=1, N, (1 - x^(7*j))^8/(1 - x^j)^9)) \\ G. C. Greubel, Nov 18 2018
-
Sage
R = PowerSeriesRing(ZZ, 'x') prec = 30 x = R.gen().O(prec) s = prod((1 - x^(7*j))^8/(1 - x^j)^9 for j in (1..prec)) print(s.coefficients()) # G. C. Greubel, Nov 18 2018
Formula
G.f.: Product_{n>=1} (1 - x^(7*n))^8/(1 - x^n)^9.
a(n) ~ exp(Pi*sqrt(110*n/21)) * sqrt(55) / (4*sqrt(3) * 7^(9/2) * n). - Vaclav Kotesovec, Nov 10 2017