cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282921 Expansion of Product_{k>=1} (1 - x^(7*k))^12/(1 - x^k)^13 in powers of x.

Original entry on oeis.org

1, 13, 104, 637, 3276, 14820, 60697, 229360, 810498, 2705118, 8592857, 26134654, 76476816, 216174700, 592220696, 1576826355, 4090222409, 10357895639, 25653139694, 62235901689, 148108568986, 346176981673, 795569268689, 1799508071426, 4009753651904, 8808973137510
Offset: 0

Views

Author

Seiichi Manyama, Feb 24 2017

Keywords

Crossrefs

Cf. A282919.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1 - x^(7*j))^12/(1 - x^j)^13: j in [1..30]]) )); // G. C. Greubel, Nov 18 2018
    
  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 - x^(7*k))^12/(1 - x^k)^13, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2017 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(prod(j=1, N, (1 - x^(7*j))^12/(1 - x^j)^13)) \\ G. C. Greubel, Nov 18 2018
    
  • Sage
    m = 30
    R = PowerSeriesRing(ZZ, 'x')
    x = R.gen().O(m)
    s = prod((1 - x^(7*j))^12/(1 - x^j)^13 for j in (1..m))
    list(s) # G. C. Greubel, Nov 18 2018

Formula

G.f.: Product_{n>=1} (1 - x^(7*n))^12/(1 - x^n)^13.
a(n) ~ exp(Pi*sqrt(158*n/21)) * sqrt(79) / (4*sqrt(3) * 7^(13/2) * n). - Vaclav Kotesovec, Nov 10 2017