cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282927 Expansion of Product_{k>=1} (1 - x^(7*k))^36/(1 - x^k)^37 in powers of x.

Original entry on oeis.org

1, 37, 740, 10545, 119510, 1142338, 9548849, 71529474, 488650453, 3084466705, 18173253703, 100751920597, 529029597362, 2645187324766, 12651654794629, 58105915432081, 257102694583806, 1099122519498352, 4551159872375703, 18293134887547452
Offset: 0

Views

Author

Seiichi Manyama, Feb 24 2017

Keywords

Crossrefs

Cf. A282919.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1 - x^(7*j))^36/(1 - x^j)^37: j in [1..m+2]]) )); // G. C. Greubel, Nov 18 2018
    
  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 - x^(7*k))^36/(1 - x^k)^37, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2017 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(prod(j=1, N, (1 - x^(7*j))^36/(1 - x^j)^37)) \\ G. C. Greubel, Nov 18 2018
    
  • Sage
    R = PowerSeriesRing(ZZ, 'x')
    prec = 30
    x = R.gen().O(prec)
    s = prod((1 - x^(7*j))^36/(1 - x^j)^37 for j in (1..prec))
    print(s.coefficients()) # G. C. Greubel, Nov 18 2018

Formula

G.f.: Product_{n>=1} (1 - x^(7*n))^36/(1 - x^n)^37.
a(n) ~ exp(Pi*sqrt(446*n/21)) * sqrt(223) / (4*sqrt(3) * 7^(37/2) * n). - Vaclav Kotesovec, Nov 10 2017