A282929 Expansion of Product_{k>=1} (1 - x^(7*k))^44/(1 - x^k)^45 in powers of x.
1, 45, 1080, 18285, 244260, 2733804, 26606745, 230915656, 1819708110, 13198528010, 89041203249, 563420646090, 3366705675744, 19105222953420, 103448715353372, 536621238174195, 2675953974595655, 12866398610335149, 59805282183021050, 269356649381129943, 1177903345233332970, 5010462608512204473, 20765528801742226455
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A282919.
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1 - x^(7*j))^44/(1 - x^j)^45: j in [1..m+2]]) )); // G. C. Greubel, Nov 18 2018 -
Maple
N:= 30: gN:= mul((1-x^(7*n))^44/(1-x^n)^45,n=1..N): S:=series(gN,x,N+1): seq(coeff(S,x,n),n=1..N); # Robert Israel, Nov 18 2018
-
Mathematica
nmax = 30; CoefficientList[Series[Product[(1 - x^(7*k))^44/(1 - x^k)^45, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2017 *)
-
PARI
my(N=30,x='x+O('x^N)); Vec(prod(j=1, N, (1 - x^(7*j))^44/(1 - x^j)^45)) \\ G. C. Greubel, Nov 18 2018
-
Sage
R = PowerSeriesRing(ZZ, 'x') prec = 30 x = R.gen().O(prec) s = prod((1 - x^(7*j))^44/(1 - x^j)^45 for j in (1..prec)) print(s.coefficients()) # G. C. Greubel, Nov 18 2018
Formula
G.f.: Product_{n>=1} (1 - x^(7*n))^44/(1 - x^n)^45.
a(n) ~ exp(Pi*sqrt(542*n/21)) * sqrt(271) / (4*sqrt(3) * 7^(45/2) * n). - Vaclav Kotesovec, Nov 10 2017