A282945 Numbers k such that 5*2^k + 1 is a prime factor of a generalized Fermat number 7^(2^m) + 1 for some m.
15, 13165, 23473, 1777515
Offset: 1
Links
- Anders Björn and Hans Riesel, Factors of generalized Fermat numbers, Math. Comp. 67 (1998), no. 221, pp. 441-446.
- Anders Björn and Hans Riesel, Table errata to "Factors of generalized Fermat numbers", Math. Comp. 74 (2005), no. 252, p. 2099.
- Anders Björn and Hans Riesel, Table errata 2 to "Factors of generalized Fermat numbers", Math. Comp. 80 (2011), pp. 1865-1866.
- OEIS Wiki, Generalized Fermat numbers
Crossrefs
Programs
-
Mathematica
lst = {}; Do[p = 5*2^n + 1; If[PrimeQ[p] && IntegerQ@Log[2, MultiplicativeOrder[7, p]], AppendTo[lst, n]], {n, 1, 13165, 2}]; lst