cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282948 Numbers n such that (u^4 + v^4)/2 = x^4 + y^4 = n has a solution in positive integers u,v,x,y.

Original entry on oeis.org

162401, 2598416, 13154481, 41574656, 101500625, 210471696, 389924801, 665194496, 1065512961, 1624010000, 2377713041, 3367547136, 4638334961, 6238796816, 8221550625, 10643111936, 13563893921, 17048207376, 21164260721, 25984160000, 31583908881, 38043408656
Offset: 1

Views

Author

Altug Alkan and Thomas Ordowski, Feb 25 2017

Keywords

Comments

All terms are composite.
If n is in this sequence, then n*k^4 with k > 0 is in this sequence.
Numbers n such that n and 2*n are both in A003336. - Michel Marcus, Feb 25 2017
The first term which is not a multiple of a(1) is a(84) = 8051889328801. - Giovanni Resta, Feb 25 2017
Based on Giovanni Resta's b-file, the squarefree terms are 162401, 8051889328801, 9305528350081, 16778006844241, .... - Altug Alkan, Feb 26 2017
Izadi & Nabardi construct a collection of elliptic curves of rank >= 5 using (essentially) terms of this sequence. - Charles R Greathouse IV, Jul 13 2024

Examples

			(19^4 + 21^4)/2 = 7^4 + 20^4 = 162401.
		

Crossrefs

Programs

  • PARI
    isA003336(n) = for(k=1, sqrtnint(n\2, 4), ispower(n-k^4, 4) && return(1));
    is(n) = isA003336(n) && isA003336(2*n);
    
  • PARI
    T=thueinit('x^4+1, 1);
    has(n)=#thue(T, n)>0 && !issquare(n)
    list(lim)=my(v=List(),x4,t); for(x=1,sqrtnint(lim\=1,4), x4=x^4; for(y=1,min(sqrtnint(lim-x4,4),x), t=x4+y^4; if(has(2*t), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 26 2017

Extensions

a(10)-a(22) from Giovanni Resta, Feb 25 2017