A282948 Numbers n such that (u^4 + v^4)/2 = x^4 + y^4 = n has a solution in positive integers u,v,x,y.
162401, 2598416, 13154481, 41574656, 101500625, 210471696, 389924801, 665194496, 1065512961, 1624010000, 2377713041, 3367547136, 4638334961, 6238796816, 8221550625, 10643111936, 13563893921, 17048207376, 21164260721, 25984160000, 31583908881, 38043408656
Offset: 1
Keywords
Examples
(19^4 + 21^4)/2 = 7^4 + 20^4 = 162401.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..513 (terms < 10^16)
- Farzali Izadi and Kamran Nabardi, A Family of Elliptic Curves With Rank >= 5, arXiv preprint (2015). arXiv:1501.03809 [math.NT]
Programs
-
PARI
isA003336(n) = for(k=1, sqrtnint(n\2, 4), ispower(n-k^4, 4) && return(1)); is(n) = isA003336(n) && isA003336(2*n);
-
PARI
T=thueinit('x^4+1, 1); has(n)=#thue(T, n)>0 && !issquare(n) list(lim)=my(v=List(),x4,t); for(x=1,sqrtnint(lim\=1,4), x4=x^4; for(y=1,min(sqrtnint(lim-x4,4),x), t=x4+y^4; if(has(2*t), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 26 2017
Extensions
a(10)-a(22) from Giovanni Resta, Feb 25 2017
Comments