A282998 Number of ways to place 6 points on a triangular grid of side n so that no two of them are adjacent.
0, 0, 1, 353, 12231, 153194, 1124820, 5893221, 24425212, 85152341, 259805430, 712840480, 1793423456, 4197531636, 9240962666, 19301854131, 38514786780, 73828909906, 136581190475, 244784427831, 426389859697, 723857976770, 1200460734396, 1948846090829, 3102524331336
Offset: 3
Examples
There is a(5) = 1 way to place 6 points on a triangular grid of side n = 5: X . . X . X . . . . X . X . X
Links
- Heinrich Ludwig, Table of n, a(n) for n = 3..1000
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
Crossrefs
Programs
-
Maple
A282998:=n->(n^12 + 6*n^11 - 195*n^10 - 670*n^9 + 17455*n^8 + 13426*n^7 - 836249*n^6 + 1252990*n^5 + 19599884*n^4 - 68542552*n^3 - 131400416*n^2 + 974223360*n - 1308856320)/46080: 0,seq(A282998(n), n=4..30); # Wesley Ivan Hurt, Apr 10 2017
-
Mathematica
Drop[CoefficientList[Series[(x^5 * (1 + 340 * x + 7720 * x^2 + 21439 * x^3 - 12927 * x^4 - 27265 * x^5 + 28385 * x^6 - 6252 * x^7 - 116 * x^8 - 2365 * x^9 + 1787 * x^10 - 352 * x^11) / (1 - x)^13 ),{x,0,27}],x],3] (* Indranil Ghosh, Feb 26 2017, from the g.f. by Colin Barker *)
-
PARI
concat(vector(2), Vec(x^5*(1 + 340*x + 7720*x^2 + 21439*x^3 - 12927*x^4 - 27265*x^5 + 28385*x^6 - 6252*x^7 - 116*x^8 - 2365*x^9 + 1787*x^10 - 352*x^11) / (1 - x)^13 + O(x^30))) \\ Colin Barker, Feb 26 2017
Formula
a(n) = (n^12 + 6*n^11 - 195*n^10 - 670*n^9 + 17455*n^8 + 13426*n^7 - 836249*n^6 + 1252990*n^5 + 19599884*n^4 - 68542552*n^3 - 131400416*n^2 + 974223360*n - 1308856320)/46080 for n>=4.
G.f.: x^5*(1 + 340*x + 7720*x^2 + 21439*x^3 - 12927*x^4 - 27265*x^5 + 28385*x^6 - 6252*x^7 - 116*x^8 - 2365*x^9 + 1787*x^10 - 352*x^11) / (1 - x)^13. - Colin Barker, Feb 26 2017
Comments