A283018 Primes which are the sum of three positive 7th powers.
3, 257, 82499, 823799, 1119863, 2099467, 4782971, 5063033, 5608699, 6880249, 7160057, 10018571, 10078253, 10094509, 10279937, 10389481, 10823671, 19503683, 20002187, 20388839, 24782969, 31584323, 35850379, 36189869, 37931147, 50614777, 57416131, 62765029, 64845797, 68355029, 71663617, 73028453
Offset: 1
Keywords
Examples
3 = 1^7 + 1^7 + 1^7; 257 = 1^7 + 2^7 + 2^7; 82499 = 3^7 + 3^7 + 5^7, etc.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 10^9: # to get all terms <= N Res:= {}: for x from 1 to floor(N^(1/7)) do for y from 1 to min(x, floor((N-x^7)^(1/7))) do for z from 1 to min(y, floor((N-x^7-y^7)^(1/7))) do p:= x^7 + y^7 + z^7; if isprime(p) then Res:= Res union {p} fi od od od: sort(convert(Res,list)); # Robert Israel, Feb 26 2017
-
Mathematica
nn = 14; Select[Union[Plus @@@ (Tuples[Range[nn], {3}]^7)], # <= nn^7 && PrimeQ[#] &]
-
PARI
list(lim)=my(v=List(),x7,y7,t,p); for(x=1,sqrtnint(lim\3,7), x7=x^7; for(y=x,sqrtnint((lim-x7)\2,7), y7=y^7; t=x7+y7; forstep(z=y+(x+1)%2,sqrtnint((lim-t)\1,7),2, if(isprime(p=t+z^7), listput(v,p))))); Set(v) \\ Charles R Greathouse IV, Feb 27 2017
Comments