A283017 Primes which are the sum of three nonzero 6th powers.
3, 857, 1459, 4889, 50753, 51481, 66377, 119107, 210961, 262937, 308801, 525017, 531569, 539633, 562691, 766739, 797681, 840241, 1000793, 1046657, 1078507, 1772291, 1864873, 2303003, 2834443, 2986777, 3032641, 3107729, 3365777, 4757609, 4804201, 5135609, 5987593, 7530329, 7534361, 7743529, 8061041
Offset: 1
Keywords
Examples
3 = 1^6 + 1^6 + 1^6; 857 = 2^6 + 2^6 + 3^6; 1459 = 1^6 + 3^6 + 3^6, etc.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 10^8: # to get all terms <= N S:= [seq(i^6, i=1..floor(N^(1/6)))]: S3:= {seq(seq(seq(S[i]+S[j]+S[k],k=1..j),j=1..i),i=1..nops(S))}: sort(convert(select(t -> t <= N and isprime(t), S3), list)); # Robert Israel, Mar 09 2017
-
Mathematica
nn = 15; Select[Union[Plus @@@ (Tuples[Range[nn], {3}]^6)], # <= nn^6 && PrimeQ[#] &]
-
PARI
list(lim)=my(v=List(),a6,a6b6,t); lim\=1; for(a=1,sqrtnint(lim-2,6), a6=a^6; for(b=1,min(sqrtnint(lim-a6-1,6),a), a6b6=a6+b^6; forstep(c=if(a6b6%2,2,1),min(sqrtnint(lim-a6b6,6),b),2, if(isprime(t=a6b6+c^6), listput(v,t))))); Set(v) \\ Charles R Greathouse IV, Mar 09 2017
Comments