cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283169 Expansion of exp( Sum_{n>=1} -sigma(9*n)*x^n/n ) in powers of x.

Original entry on oeis.org

1, -13, 65, -126, -117, 988, -1377, -1157, 5382, -4419, -4212, 12519, -11179, -5058, 27378, -23005, -16488, 44343, -30249, -18513, 73710, -56259, -38741, 93483, -69570, -23778, 137266, -90396, -74079, 140292, -108621, -39249, 222624, -145710, -99234
Offset: 0

Views

Author

Seiichi Manyama, Mar 02 2017

Keywords

Crossrefs

Cf. A283121 (exp( Sum_{n>=1} sigma(9*n)*x^n/n )), A283123 (sigma(9*n)).
Cf. exp( Sum_{n>=1} -sigma(k*n)*x^n/n ): A115110 (k=2), A185654 (k=3), A283163 (k=4), A282937 (k=5), A283164 (k=6), A282942 (k=7), A283168 (k=8), this sequence (k=9).

Formula

G.f.: Product_{n>=1} (1 - x^n)^13/(1 - x^(3*n))^4.
a(n) = -(1/n)*Sum_{k=1..n} sigma(9*k)*a(n-k). - Seiichi Manyama, Mar 04 2017