cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A283121 Expansion of exp( Sum_{n>=1} sigma(9*n)*x^n/n ) in powers of x.

Original entry on oeis.org

1, 13, 104, 633, 3224, 14404, 58151, 216294, 751582, 2464860, 7689669, 22961822, 65955677, 182985947, 492016590, 1285829996, 3274100475, 8139933477, 19795490575, 47165634583, 110259083454, 253208634687, 571880965638, 1271549402110, 2785836824325, 6019078365425
Offset: 0

Views

Author

Seiichi Manyama, Mar 01 2017

Keywords

Examples

			G.f.: A(x) = 1 + 13*x + 104*x^2 + 633*x^3 + 3224*x^4 + 14404*x^5 + ...
log(A(x)) = 13*x + 39*x^2/2 + 40*x^3/3 + 91*x^4/4 + 78*x^5/5 + 120*x^6/6 + 104*x^7/7 + 195*x^8/8 + ... + sigma(9*n)*x^n/n + ...
		

Crossrefs

Cf. A283123 (sigma(9*n)), A283169 (exp( Sum_{n>=1} -sigma(9*n)*x^n/n )).
Cf. A182818 (k=2), A182819 (k=3), A182820 (k=4), A182821 (k=5), A283119 (k=6), A283077 (k=7), A283120 (k=8), this sequence (k=9).

Formula

G.f.: Product_{n>=1} (1 - x^(3*n))^4/(1 - x^n)^13.
a(n) = (1/n)*Sum_{k=1..n} sigma(9*k)*a(n-k). - Seiichi Manyama, Mar 05 2017
a(n) ~ 1225 * sqrt(35) * exp(sqrt(70*n)*Pi/3) / (559872*n^3). - Vaclav Kotesovec, Mar 20 2017

A283164 Expansion of exp( Sum_{n>=1} -sigma(6*n)*x^n/n ) in powers of x.

Original entry on oeis.org

1, -12, 58, -133, 95, 194, -418, 97, 325, -99, -238, 169, -217, 131, 190, -145, 441, -647, 169, -527, 72, 1129, 313, -972, 2, -491, -565, 1944, -1175, -216, 972, 863, -1259, 288, 0, -1155, -1355, -207, 2925, 1753, 1402, -2387, -2257, -1030, 315, 432, -72, 1621, 358
Offset: 0

Views

Author

Seiichi Manyama, Mar 02 2017

Keywords

Crossrefs

Cf. A224613 (sigma(6*n)), A283119 (exp( Sum_{n>=1} sigma(6*n)*x^n/n )).
Cf. exp( Sum_{n>=1} -sigma(k*n)*x^n/n ): A115110 (k=2), A185654 (k=3), A283163 (k=4), A282937 (k=5), this sequence (k=6), A282942 (k=7), A283168 (k=8), A283169 (k=9).

Formula

G.f.: Product_{n>=1} (1 - x^n)^12 * (1 - x^(6*n))/((1 - x^(2*n))^4 * (1 - x^(3*n))^3).
a(n) = -(1/n)*Sum_{k=1..n} sigma(6*k)*a(n-k). - Seiichi Manyama, Mar 04 2017

A283168 Expansion of exp( Sum_{n>=1} -sigma(8*n)*x^n/n ) in powers of x.

Original entry on oeis.org

1, -15, 97, -350, 770, -1133, 1540, -2731, 4230, -3960, 3402, -6580, 9167, -5390, 4310, -11061, 12320, -5306, 2030, -7530, 14784, -4340, -10119, -9240, 20090, 11438, -17275, -4928, 2270, 14080, -26840, 7700, 16646, 24640, -53760, 7449, 10780, 46200, -61600
Offset: 0

Views

Author

Seiichi Manyama, Mar 02 2017

Keywords

Crossrefs

Cf. A283120 (exp( Sum_{n>=1} sigma(8*n)*x^n/n )), A283122 (sigma(8*n)).
Cf. exp( Sum_{n>=1} -sigma(k*n)*x^n/n ): A115110 (k=2), A185654 (k=3), A283163 (k=4), A282937 (k=5), A283164 (k=6), A282942 (k=7), this sequence (k=8), A283169 (k=9).

Formula

G.f.: Product_{n>=1} (1 - x^n)^15/(1 - x^(2*n))^7.
a(n) = -(1/n)*Sum_{k=1..n} sigma(8*k)*a(n-k). - Seiichi Manyama, Mar 04 2017

A283163 Expansion of exp( Sum_{n>=1} -sigma(4*n)*x^n/n ) in powers of x.

Original entry on oeis.org

1, -7, 17, -14, 2, -21, 36, 13, -26, -24, 10, 12, -17, 34, 22, 19, -96, -10, 14, 38, 0, 12, -23, 72, -38, -2, -11, -64, -34, 0, 72, 84, -26, 0, 0, -79, 60, 24, -32, -58, -7, -84, 50, 26, 120, 0, 0, 46, -34, -64, 10, -119, 70, 0, 22, -70, 36, 37, -120, 0
Offset: 0

Views

Author

Seiichi Manyama, Mar 02 2017

Keywords

Crossrefs

Cf. A182820 (exp( Sum_{n>=1} sigma(4*n)*x^n/n )), A193553 (sigma(4*n)).
Cf. exp( Sum_{n>=1} -sigma(k*n)*x^n/n ): A115110 (k=2), A185654 (k=3), this sequence (k=4), A282937 (k=5), A283164 (k=6), A282942 (k=7), A283168 (k=8), A283169 (k=9).

Formula

G.f.: Product_{n>=1} (1 - x^n)^7/(1 - x^(2*n))^3.
a(n) = -(1/n)*Sum_{k=1..n} sigma(4*k)*a(n-k). - Seiichi Manyama, Mar 04 2017
Showing 1-4 of 4 results.