cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A283243 Expansion of exp( Sum_{n>=1} -sigma_2(3*n)*x^n/n ) in powers of x.

Original entry on oeis.org

1, -10, 25, 53, -270, -77, 1057, 610, -2031, -5438, -1953, 17236, 34121, 3351, -103369, -195850, -55471, 468448, 1067785, 764094, -1430780, -4974559, -6242563, 334620, 16946199, 34459888, 29243953, -24503978, -124514921, -205795663, -140256312, 191109263
Offset: 0

Views

Author

Seiichi Manyama, Mar 03 2017

Keywords

Crossrefs

Cf. A283237 (sigma_2(3*n)), A283238 (exp( Sum_{n>=1} sigma_2(3*n)*x^n/n )).
Cf. exp( Sum_{n>=1} -sigma_k(3*n)*x^n/n ): A185654 (k=1), this sequence (k=2).
Cf. exp( Sum_{n>=1} -sigma_2(m*n)*x^n/n ): A073592 (m=1), A283242 (m=2), this sequence (m=3).

Programs

  • PARI
    A283243_vec(m)=Vec(exp(sum(n=1,m,-sigma(3*n,2)*x^n/n)+x*O(x^m))) \\ Yields m+1 terms a(0..m). - M. F. Hasler, Mar 05 2017

Formula

a(n) = -(1/n)*Sum_{k=1..n} sigma_2(3*k)*a(n-k). - Seiichi Manyama, Mar 04 2017
Showing 1-1 of 1 results.