cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A283242 Expansion of exp( Sum_{n>=1} -sigma_2(2*n)*x^n/n ) in powers of x.

Original entry on oeis.org

1, -5, 2, 15, 12, -36, -92, -17, 167, 358, 283, -293, -1321, -2012, -1101, 2299, 7296, 10505, 6901, -7705, -31240, -52490, -51336, -6032, 91521, 217064, 303776, 250595, -36282, -575622, -1234465, -1684515, -1448538, -66980, 2610835, 6087681, 8990575
Offset: 0

Views

Author

Seiichi Manyama, Mar 03 2017

Keywords

Crossrefs

Cf. A283224 (exp( Sum_{n>=1} sigma_2(2*n)*x^n/n )).
Cf. exp( Sum_{n>=1} -sigma_k(2*n)*x^n/n ): A115110 (k=1), this sequence (k=2).
Cf. exp( Sum_{n>=1} -sigma_2(m*n)*x^n/n ): A073592 (m=1), this sequence (m=2), A283243 (m=3).

Formula

a(n) = -(1/n)*Sum_{k=1..n} sigma_2(2*k)*a(n-k). - Seiichi Manyama, Mar 04 2017
Showing 1-1 of 1 results.