A283393 a(n) = gcd(n^2-1, n^2+9).
1, 10, 1, 2, 5, 2, 5, 2, 1, 10, 1, 10, 1, 2, 5, 2, 5, 2, 1, 10, 1, 10, 1, 2, 5, 2, 5, 2, 1, 10, 1, 10, 1, 2, 5, 2, 5, 2, 1, 10, 1, 10, 1, 2, 5, 2, 5, 2, 1, 10, 1, 10, 1, 2, 5, 2, 5, 2, 1, 10, 1, 10, 1, 2, 5, 2, 5, 2, 1, 10, 1, 10, 1, 2, 5, 2, 5, 2, 1, 10, 1, 10, 1, 2, 5, 2, 5, 2, 1, 10
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,1).
Programs
-
Magma
&cat [[1, 10, 1, 2, 5, 2, 5, 2, 1, 10]^^10];
-
Mathematica
Table[PolynomialGCD[n^2 - 1, n^2 + 9], {n, 0, 100}] LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, {1, 10, 1, 2, 5, 2, 5, 2, 1, 10}, 100]
-
Maxima
makelist(gcd(n^2-1, n^2+9), n, 0, 100);
-
PARI
Vec((1 + 10*x + x^2 + 2*x^3 + 5*x^4 + 2*x^5 + 5*x^6 + 2*x^7 + x^8 + 10*x^9)/(1 - x^10) + O(x^100)) \\ Colin Barker, Mar 08 2017
-
Python
[1, 10, 1, 2, 5, 2, 5, 2, 1, 10]*10
-
Sage
[gcd(n^2-1, n^2+9) for n in range(100)]
Formula
G.f.: (1 + 10*x + x^2 + 2*x^3 + 5*x^4 + 2*x^5 + 5*x^6 + 2*x^7 + x^8 + 10*x^9)/(1 - x^10).
Comments