cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283394 a(n) = 3*n*(3*n + 7)/2 + 4.

Original entry on oeis.org

4, 19, 43, 76, 118, 169, 229, 298, 376, 463, 559, 664, 778, 901, 1033, 1174, 1324, 1483, 1651, 1828, 2014, 2209, 2413, 2626, 2848, 3079, 3319, 3568, 3826, 4093, 4369, 4654, 4948, 5251, 5563, 5884, 6214, 6553, 6901, 7258, 7624, 7999, 8383, 8776, 9178, 9589, 10009
Offset: 0

Views

Author

Bruno Berselli, Mar 23 2017

Keywords

Comments

Sum_{k = 0..n} (3*k + r)^3 is divisible by 3*n*(3*n + 2*r + 3)/2 + r^2: the sequence corresponds to the case r = 2 of this formula (other cases are listed in Crossrefs section).
Also, Sum_{k = 0..n} (3*k + 2)^3 / a(n) gives 2, 7, 15, 26, 40, 57, 77, 100, 126, 155, 187, 222, ... (A005449).
a(n) is even if n belongs to A014601. No term is divisible by 3, 5, 7 and 11.

Crossrefs

Sequences with formula 3*n*(3*n + 2*r + 3)/2 + r^2: A038764 (r=-1), A027468 (r=0), A081271 (r=1), this sequence (r=2), A027468 (r=3; offset: -1), A080855 (r=4; offset: -2).

Programs

  • Magma
    [3*n*(3*n+7)/2+4: n in [0..50]];
    
  • Mathematica
    Table[3 n (3 n + 7)/2 + 4, {n, 0, 50}]
    LinearRecurrence[{3,-3,1},{4,19,43},50] (* Harvey P. Dale, Mar 02 2019 *)
  • Maxima
    makelist(3*n*(3*n+7)/2+4, n, 0, 50);
    
  • PARI
    a(n) = 3*n*(3*n + 7)/2 + 4; \\ Indranil Ghosh, Mar 24 2017
  • Python
    [3*n*(3*n+7)/2+4 for n in range(50)]
    
  • Sage
    [3*n*(3*n+7)/2+4 for n in range(50)]
    

Formula

O.g.f.: (4 + 7*x - 2*x^2)/(1 - x)^3.
E.g.f.: (8 + 30*x + 9*x^2)*exp(x)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A081271(-n-2).
a(n) = 3*A095794(n+1) + 1.
a(n) = A034856(3*n+2) = A101881(6*n+2) = A165157(6*n+3) = A186349(6*n+3).
The inverse binomial transform yields 4, 15, 9, 0 (0 continued), therefore:
a(n) = 4*binomial(n,0) + 15*binomial(n,1) + 9*binomial(n,2).