A283394 a(n) = 3*n*(3*n + 7)/2 + 4.
4, 19, 43, 76, 118, 169, 229, 298, 376, 463, 559, 664, 778, 901, 1033, 1174, 1324, 1483, 1651, 1828, 2014, 2209, 2413, 2626, 2848, 3079, 3319, 3568, 3826, 4093, 4369, 4654, 4948, 5251, 5563, 5884, 6214, 6553, 6901, 7258, 7624, 7999, 8383, 8776, 9178, 9589, 10009
Offset: 0
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Nickolas Arustamyan, Christopher Cox, Erik Lundberg, Sean Perry, and Zvi Rosen, On the Number of Equilibria Balancing Newtonian Point Masses with a Central Force, arXiv:2106.11416 [math-ph], 2021.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[3*n*(3*n+7)/2+4: n in [0..50]];
-
Mathematica
Table[3 n (3 n + 7)/2 + 4, {n, 0, 50}] LinearRecurrence[{3,-3,1},{4,19,43},50] (* Harvey P. Dale, Mar 02 2019 *)
-
Maxima
makelist(3*n*(3*n+7)/2+4, n, 0, 50);
-
PARI
a(n) = 3*n*(3*n + 7)/2 + 4; \\ Indranil Ghosh, Mar 24 2017
-
Python
[3*n*(3*n+7)/2+4 for n in range(50)]
-
Sage
[3*n*(3*n+7)/2+4 for n in range(50)]
Comments