A283419 a(n) is the multiplicative inverse of 3 modulo the n-th prime (or 0 if none exists).
1, 0, 2, 5, 4, 9, 6, 13, 8, 10, 21, 25, 14, 29, 16, 18, 20, 41, 45, 24, 49, 53, 28, 30, 65, 34, 69, 36, 73, 38, 85, 44, 46, 93, 50, 101, 105, 109, 56, 58, 60, 121, 64, 129, 66, 133, 141, 149, 76, 153, 78, 80, 161, 84, 86, 88, 90, 181, 185, 94, 189, 98, 205, 104, 209, 106, 221, 225
Offset: 1
Keywords
Examples
3*5 mod prime(4) = 15 mod 7 = 1, so a(4) = 5.
Links
- Eric Weisstein's MathWorld, Modular Inverse
Crossrefs
Cf. A006254 (modular inverses of 2 modulo the odd primes).
Programs
-
Maple
a:= n-> `if`(n=2, 0, (p-> ceil(2*p/3)/(p mod 3))(ithprime(n))): seq(a(n), n=1..75); # Alois P. Heinz, Feb 08 2023
-
Mathematica
a[n_] := ModularInverse[3, Prime[n]]; Table[a[n], {n, 3, 100}] Table[If[Mod[Prime@n,3]==0,0,ModularInverse[3,Prime@n]],{n,88}]
-
PARI
a(n) = if (n==2, 0, lift(1/Mod(3, prime(n)))); \\ Michel Marcus, Mar 31 2021
Formula
3 * a(n) == 1 (mod prime(n)).
a(n) = (p * (-1)^((r+1)/2))/3 mod p = q * (-1)^((r+1)/2) mod p where p = prime(n) = 3*q + r, with r = -1 or 1 and quotient q a positive integer. - Ian George Walker, Mar 24 2021
a(n) = ceiling(2p/3)/(p mod 3) where p is the n-th prime, a(2)=0. - Travis Scott, Feb 08 2023
Extensions
Name edited and a(1)-a(2) prepended by Travis Scott, Feb 08 2023