cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283424 Number T(n,k) of blocks of size >= k in all set partitions of [n], assuming that every set partition contains one block of size zero; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 2, 1, 5, 3, 1, 15, 10, 4, 1, 52, 37, 17, 5, 1, 203, 151, 76, 26, 6, 1, 877, 674, 362, 137, 37, 7, 1, 4140, 3263, 1842, 750, 225, 50, 8, 1, 21147, 17007, 9991, 4307, 1395, 345, 65, 9, 1, 115975, 94828, 57568, 25996, 8944, 2392, 502, 82, 10, 1
Offset: 0

Views

Author

Alois P. Heinz, May 14 2017

Keywords

Comments

T(n,k) is defined for all n,k >= 0. The triangle contains only the terms with k<=n. T(n,k) = 0 for k>n.

Examples

			T(3,2) = 4 because the number of blocks of size >= 2 in all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 1+1+1+1+0 = 4.
Triangle T(n,k) begins:
      1;
      2,     1;
      5,     3,    1;
     15,    10,    4,    1;
     52,    37,   17,    5,    1;
    203,   151,   76,   26,    6,   1;
    877,   674,  362,  137,   37,   7,  1;
   4140,  3263, 1842,  750,  225,  50,  8, 1;
  21147, 17007, 9991, 4307, 1395, 345, 65, 9, 1;
  ...
		

Crossrefs

Columns k=0-10 give: A000110(n+1), A138378 or A005493(n-1), A124325, A288785, A288786, A288787, A288788, A288789, A288790, A288791, A288792.
Row sums give A124427(n+1).
T(2n,n) gives A286896.

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(k>n, 0,
          binomial(n, k)*combinat[bell](n-k)+T(n, k+1))
        end:
    seq(seq(T(n, k), k=0..n), n=0..14);
  • Mathematica
    T[n_, k_] := Sum[Binomial[n, j]*BellB[j], {j, 0, n - k}];
    Table[T[n, k], {n, 0, 14}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 30 2018 *)

Formula

T(n,k) = Sum_{j=0..n-k} binomial(n,j) * Bell(j).
T(n,k) = Bell(n+1) - Sum_{j=0..k-1} binomial(n,j) * Bell(n-j).
T(n,k) = Sum_{j=k..n} A056857(n+1,j) = Sum_{j=k..n} A056860(n+1,n+1-j).
Sum_{k=0..n} T(n,k) = n*Bell(n)+Bell(n+1) = A124427(n+1).
Sum_{k=1..n} T(n,k) = n*Bell(n) = A070071(n).
T(n,0)-T(n,1) = Bell(n).
Sum_{k=0..n} (-1)^k * T(n,k) = A224271(n+1). - Alois P. Heinz, May 17 2023