cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283431 a(n) is the number of zeros of the Hermite H(n, x) polynomial in the open interval (-1, +1).

Original entry on oeis.org

0, 1, 2, 1, 2, 3, 2, 3, 2, 3, 2, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 8, 7, 8, 7, 8, 7, 8, 7, 8, 7, 8, 7, 8, 7, 8, 7, 8, 9, 8, 9
Offset: 0

Views

Author

Michel Lagneau, May 16 2017

Keywords

Comments

The Hermite polynomials satisfy the following recurrence relation:
H(0,x) = 1,
H(1,x) = 2*x,
H(n,x) = 2*x*H(n-1,x) - 2*(n-1)*H(n-2,x).
The first few Hermite polynomials are:
H(0,x) = 1
H(1,x) = 2x
H(2,x) = 4x^2 - 2
H(3,x) = 8x^3 - 12x
H(4,x) = 16x^4 - 48x^2 + 12
H(5,x) = 32x^5 - 160x^3 + 120x

Examples

			a(5) = 3 because the zeros of H(5,x) = 32x^5 - 160x^3 + 120x are x1 = -2.0201828..., x2 = -.9585724..., x3 = 0., x4 = .9585724... and x5 = 2.020182... with three roots x2, x3 and x4 in the open interval (-1, +1).
		

Crossrefs

Programs

  • Maple
    for n from 0 to 90 do:it:=0:
    y:=[fsolve(expand(HermiteH(n,x)),x,real)]:for m from 1 to nops(y) do:if abs(y[m])<1 then it:=it+1:else fi:od: printf(`%d, `, it):od:
  • Mathematica
    a[n_] := Length@ List@ ToRules@ Reduce[ HermiteH[n, x] == 0 && -1 < x < 1, x]; Array[a, 82, 0] (* Giovanni Resta, May 17 2017 *)

Formula

Conjecture: a(n) = A257564(n+2).