A283432 Triangle read by rows: T(n,m) is the number of pattern classes in the (n,m)-rectangular grid with 3 colors and n>=m, two patterns are in the same class if one of them can be obtained by a reflection or 180-degree rotation of the other.
1, 1, 3, 1, 6, 27, 1, 18, 216, 5346, 1, 45, 1701, 134865, 10766601, 1, 135, 15066, 3608550, 871858485, 211829725395, 1, 378, 133407, 96997824, 70607782701, 51472887053238, 37523659114815147, 1, 1134, 1198476, 2616461190, 5719211266905, 12507889858389450, 27354747358715650524, 59824832319304600777362
Offset: 0
Examples
Triangle begins: =========================================================== n\ m | 0 1 2 3 4 5 -----|----------------------------------------------------- 0 | 1 1 | 1 3 2 | 1 6 27 3 | 1 18 216 5346 4 | 1 45 1701 134865 10766601 5 | 1 135 15066 3608550 871858485 211829725395 ...
Links
- María Merino, Rows n=0..46 of triangle, flattened
- M. Merino and I. Unanue, Counting squared grid patterns with Pólya Theory, EKAIA, 34 (2018), 289-316 (in Basque).
Crossrefs
Cf. A225910.
Programs
-
Mathematica
Table[Which[AllTrue[{n,m},EvenQ],(3^(m n)+3 3^((m n)/2))/4,EvenQ[ n]&&OddQ[m],(3^(m n)+3^((m n+n)/2)+2 3^((m n)/2))/4,OddQ[n]&&EvenQ[ m],(3^(m n)+3^((m n+m)/2)+2 3^((m n)/2))/4,True,(3^(m n)+3^((m n+n)/2)+3^((m n+m)/2)+3^((m n+1)/2))/4],{n,0,10},{m,0,n}]//Flatten (* Harvey P. Dale, Mar 29 2023 *)
Formula
For even n and m: T(n,m) = (3^(m*n) + 3*3^(m*n/2))/4;
for even n and odd m: T(n,m) = (3^(m*n) + 3^((m*n+n)/2) + 2*3^(m*n/2))/4;
for odd n and even m: T(n,m) = (3^(m*n) + 3^((m*n+m)/2) + 2*3^(m*n/2))/4;
for odd n and m: T(n,m) = (3^(m*n) + 3^((m*n+n)/2) + 3^((m*n+m)/2) + 3^((m*n+1)/2))/4.
Comments