A283434 Triangle read by rows: T(n,m) is the number of pattern classes in the (n,m)-rectangular grid with 5 colors and n>=m, two patterns are in the same class if one of them can be obtained by a reflection or 180-degree rotation of the other.
1, 1, 5, 1, 15, 175, 1, 75, 4125, 496875, 1, 325, 98125, 61140625, 38147265625, 1, 1625, 2446875, 7632421875, 23841923828125, 74505821533203125, 1, 7875, 61046875, 953736328125, 14901161376953125, 232830644622802734375, 3637978807094573974609375
Offset: 0
Examples
Triangle begins: ============================================================================ n\m | 0 1 2 3 4 5 ----|----------------------------------------------------------------------- 0 | 1 1 | 1 5 2 | 1 15 175 3 | 1 75 4125 496875 4 | 1 325 98125 61140625 38147265625 5 | 1 1625 2446875 7632421875 23841923828125 74505821533203125 ...
Links
- María Merino, Rows n=0..38 of triangle, flattened
- M. Merino and I. Unanue, Counting squared grid patterns with Pólya Theory, EKAIA, 34 (2018), 289-316 (in Basque).
Formula
For even n and m: T(n,m) = (5^(m*n) + 3*5^(m*n/2))/4;
for even n and odd m: T(n,m) = (5^(m*n) + 5^((m*n+n)/2) + 2*5^(m*n/2))/4;
for odd n and even m: T(n,m) = (5^(m*n) + 5^((m*n+m)/2) + 2*5^(m*n/2))/4;
for odd n and m: T(n,m) = (5^(m*n) + 5^((m*n+n)/2) + 5^((m*n+m)/2) + 5^((m*n+1)/2))/4.
Comments