A283455 Numbers m such that 2^m - 1 has at most 2 distinct prime factors.
1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 17, 19, 23, 31, 37, 41, 49, 59, 61, 67, 83, 89, 97, 101, 103, 107, 109, 127, 131, 137, 139, 149, 167, 197, 199, 227, 241, 269, 271, 281, 293, 347, 373, 379, 421, 457, 487, 521, 523, 607, 727, 809, 881, 971, 983, 997, 1061
Offset: 1
Keywords
Links
- The Cunningham Project, The Main Tables, Table 2- Factorizations of 2^n-1, n odd, n<1300.
Programs
-
Mathematica
Select[Join[Range@ 6, Range[7, 201, 2]], PrimeNu[2^# - 1] <= 2 &] (* Michael De Vlieger, Mar 08 2017 *)
-
PARI
is(n)=omega(2^n-1)<3 \\ Charles R Greathouse IV, Mar 08 2017
Extensions
More terms from Peter J. C. Moses, Mar 08 2017
a(48)-a(50) from Charles R Greathouse IV, Mar 08 2017
a(51)-a(57) from Amiram Eldar, Feb 13 2020
Comments