A283484 Odd bisection of A283983; square root of the largest square dividing A277324.
1, 1, 3, 1, 3, 3, 15, 1, 3, 15, 45, 15, 15, 15, 105, 1, 3, 105, 225, 525, 1575, 1125, 1575, 105, 105, 525, 1575, 525, 105, 105, 1155, 1, 3, 1155, 1575, 3675, 7875, 275625, 55125, 5775, 17325, 275625, 4134375, 55125, 55125, 275625, 121275, 1155, 1155, 40425, 385875, 202125, 606375, 1929375, 606375, 5775, 8085, 40425, 121275, 40425, 1155, 1155, 15015, 1, 3
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..2048
Programs
-
Mathematica
A003961[p_?PrimeQ] := A003961[p] = Prime[ PrimePi[p] + 1]; A003961[1] = 1; A003961[n_] := A003961[n] = Times @@ ( A003961[First[#]] ^ Last[#] & ) /@ FactorInteger[n] (* after Jean-François Alcover, Dec 01 2011 *); A260443[n_]:= If[n<2, n + 1, If[EvenQ[n], A003961[A260443[n/2]], A260443[(n - 1)/2] * A260443[(n + 1)/2]]]; A275812[n_]:= PrimeOmega[n] - If[n<2, 0,Count[Transpose[FactorInteger[n]][[2]], 1]]; A277324[n_]:=A260443[2n + 1]; A000188[n_]:= Sum[Boole[Mod[i^2, n] == 0], {i, n}]; Table[A000188[A277324[n]], {n, 0, 50}] (* Indranil Ghosh, Mar 28 2017 *)
-
PARI
A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From Michel Marcus A260443(n) = if(n<2, n+1, if(n%2, A260443(n\2)*A260443(n\2+1), A003961(A260443(n\2)))); \\ Cf. Charles R Greathouse IV's code for "ps" in A186891 and A277013. A277324(n) = A260443((2*n)+1); A000188(n) = core(n, 1)[2]; \\ This function from Michel Marcus, Feb 27 2013 A283484(n) = A000188(A277324(n));
-
Scheme
(define (A283484 n) (A000188 (A277324 n))) (define (A283484 n) (A283983 (+ n n 1)))