A283529 The number of partitions of n into simple parts.
1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 9, 9, 12, 12, 15, 15, 18, 18, 22, 22, 26, 26, 30, 30, 35, 35, 40, 40, 45, 45, 52, 52, 59, 59, 66, 66, 75, 75, 84, 84, 93, 93, 104, 104, 115, 115, 126, 126, 139, 139, 152, 152, 165, 165, 180, 180, 195, 195, 210, 210, 228, 228
Offset: 0
Keywords
Examples
a(6)=5 counts 1+1+1+1+1+1 = 1+1+1+2 = 1+1+2+2 = 2+2+2 =6. a(7)=5 counts 1+1+1+1+1+1+1 = 1+1+1+1+1+2 = 1+1+1+2+2 = 1+2+2+2 = 1+6.
Links
- Giovanni Resta, Table of n, a(n) for n = 0..10000
- J. Wang, Reduced phi-partitions of positive integers, Fib. Quart. 31 (4) (1993) 365-369.
Programs
-
Maple
isA002110 := proc(n) member(n,[1, 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, 6469693230, 200560490130, 7420738134810, 304250263527210, 13082761331670030, 614889782588491410, 32589158477190044730, 1922760350154212639070]) ; end proc: A283529 := proc(n) local a,k,issimp,p ; a := 0 ; for k in combinat[partition](n) do issimp := true ; for p in k do if not isA002110(p) then issimp := false; break; end if; end do: if issimp then a := a+1 ; end if; end do: a ; end proc:
-
Mathematica
(* It suffices to compute 3 primorials to get 100 correct terms *) terms = 100; primorials = FoldList[Times, 1, Prime[Range[3]]]; 1/(Times @@ (1 - x^primorials)) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, May 19 2018 *)
Formula
G.f.: 1/Product_{i>=0} (1-x^A002110(i)).
Extensions
a(0)=1 prepended by Alois P. Heinz, Mar 13 2017
Comments