cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283529 The number of partitions of n into simple parts.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 9, 9, 12, 12, 15, 15, 18, 18, 22, 22, 26, 26, 30, 30, 35, 35, 40, 40, 45, 45, 52, 52, 59, 59, 66, 66, 75, 75, 84, 84, 93, 93, 104, 104, 115, 115, 126, 126, 139, 139, 152, 152, 165, 165, 180, 180, 195, 195, 210, 210, 228, 228
Offset: 0

Views

Author

R. J. Mathar, Mar 10 2017

Keywords

Comments

Number of partitions of n where each part is simple, meaning that each part is in A002110.

Examples

			a(6)=5 counts 1+1+1+1+1+1 = 1+1+1+2 = 1+1+2+2 = 2+2+2 =6.
a(7)=5 counts 1+1+1+1+1+1+1 = 1+1+1+1+1+2 = 1+1+1+2+2 = 1+2+2+2 = 1+6.
		

Crossrefs

Programs

  • Maple
    isA002110 := proc(n)
        member(n,[1, 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, 6469693230, 200560490130, 7420738134810, 304250263527210, 13082761331670030, 614889782588491410, 32589158477190044730, 1922760350154212639070]) ;
    end proc:
    A283529 := proc(n)
        local a,k,issimp,p ;
        a := 0 ;
        for k in combinat[partition](n) do
            issimp := true ;
            for p in k do
                if not isA002110(p) then
                    issimp := false;
                    break;
                end if;
            end do:
            if issimp then
                a := a+1 ;
            end if;
        end do:
        a ;
    end proc:
  • Mathematica
    (* It suffices to compute 3 primorials to get 100 correct terms *)
    terms = 100; primorials = FoldList[Times, 1, Prime[Range[3]]]; 1/(Times @@ (1 - x^primorials)) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, May 19 2018 *)

Formula

G.f.: 1/Product_{i>=0} (1-x^A002110(i)).

Extensions

a(0)=1 prepended by Alois P. Heinz, Mar 13 2017