A283532 Primes p such that (q^2 - p^2) / 24 is prime, where q is the next prime after p.
7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 67, 83, 101, 109, 127, 131, 137, 251, 271, 281, 307, 331, 379, 383, 443, 487, 499, 563, 617, 641, 769, 821, 877, 937, 971, 1009, 1123, 1223, 1231, 1283, 1291, 1297, 1543, 1567, 1697, 1877, 2063, 2081, 2237, 2269, 2371, 2381, 2383, 2389, 2551, 2657, 2659, 2801, 2851, 2857
Offset: 1
Keywords
Examples
7 is a term since 11 is the next prime and (11^2 - 7^2)/24 = 3 is prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 10000: # to get all terms <= N Primes:= select(isprime, [seq(i,i=3..N,2)]): f:= proc(p,q) local r; r:= (q^2-p^2)/24; if r::integer and isprime(r) then p fi end proc: seq(f(Primes[i],Primes[i+1]),i=1..nops(Primes)-1); # Robert Israel, Mar 10 2017
-
Mathematica
Select[Prime@ Range@ 415, PrimeQ[(NextPrime[#]^2 - #^2)/24] &] (* Michael De Vlieger, Mar 13 2017 *)
-
PARI
is(n) = n>3 && isprime(n) && isprime((nextprime(n+1)^2-n^2)/24);
Comments