A283564 Positive integers k such that k = a/(b+c) + b/(a+c) + c/(a+b) for some positive integers a, b and c where the corresponding elliptic curve has rank=1.
4, 6, 10, 12, 14, 16, 18, 24, 28, 32, 38, 42, 46, 48, 58, 60, 66, 76, 82, 92, 102, 112, 116, 126, 130, 132, 136, 146, 156, 158, 162, 178, 182, 184, 186, 196, 198, 200, 206, 218, 232, 266, 270, 276, 282, 304, 310, 312, 314, 318, 332, 336, 338, 346, 348, 362, 364, 378, 382, 388, 402, 408
Offset: 1
Keywords
Links
- Xianwen Wang, Table of n, a(n) for n = 1..107 (for a(n)<=1000).
- Alon Amit, How do you find the positive integer solutions to ...?, Quora, Aug 07, 2017 [Broken link]
- Andrew Bremner and Allan Macleod, An Unusual Cubic Representation Problem, Annales Mathematicae et Informaticae, volume 43 (2014), pages 29-41, see Table 2 page 38.
- Mathoverflow, Estimating the size of solutions of a diophantine equation
- H. Nakao, Rational Points on Elliptic Curves: x/(y+z)+y/(z+x)+z/(x+y)=n, 2018 (in Japanese).
- Physics Forums, Find positive integer solutions to a/(b+c)+b/(a+c)+c/(a+b)=4, Aug 06 2017
- Jinyuan Wang, PARI program and details of k = 4, 6, 10, 12, 14
Crossrefs
Cf. A369896.
Programs
-
Magma
is_A283564 := function(k) E := EllipticCurve([0, 4*k^2 + 12*k - 3, 0, 32*(k+3), 0]); return ((Rank(E) eq 1) and (Min([g[1] : g in Generators(E)]) lt 0)); end function; [k : k in [1..200] | is_A283564(k)]; // Robin Visser, Feb 04 2024
-
Sage
def is_A283564(k): E = EllipticCurve([0, 4*k^2 + 12*k - 3, 0, 32*(k+3), 0]) return ((E.rank()==1) and (min([g.xy()[0] for g in E.gens()]) < 0)) print([k for k in range(1, 70) if is_A283564(k)]) # Robin Visser, Feb 04 2024
Extensions
Definition clarified by Jimmy Gustafsson, May 08 2019
More terms from Robin Visser, Feb 04 2024
Comments